Enum flowistry_pdg::rustc::mir::MirPhase
source · pub enum MirPhase {
Built,
Analysis(AnalysisPhase),
Runtime(RuntimePhase),
}
Expand description
Represents the “flavors” of MIR.
All flavors of MIR use the same data structure, but there are some important differences. These differences come in two forms: Dialects and phases.
Dialects represent a stronger distinction than phases. This is because the transitions between
dialects are semantic changes, and therefore technically lowerings between distinct IRs. In
other words, the same Body
might be well-formed for multiple dialects, but
have different semantic meaning and different behavior at runtime.
Each dialect additionally has a number of phases. However, phase changes never involve semantic changes. If some MIR is well-formed both before and after a phase change, it is also guaranteed that it has the same semantic meaning. In this sense, phase changes can only add additional restrictions on what MIR is well-formed.
When adding phases, remember to update MirPhase::phase_index
.
Variants§
Built
The MIR that is generated by MIR building.
The only things that operate on this dialect are unsafeck, the various MIR lints, and const qualifs.
This has no distinct phases.
Analysis(AnalysisPhase)
The MIR used for most analysis.
The only semantic change between analysis and built MIR is constant promotion. In built MIR, sequences of statements that would generally be subject to constant promotion are semantically constants, while in analysis MIR all constants are explicit.
The result of const promotion is available from the mir_promoted
and promoted_mir
queries.
This is the version of MIR used by borrowck and friends.
Runtime(RuntimePhase)
The MIR used for CTFE, optimizations, and codegen.
The semantic changes that occur in the lowering from analysis to runtime MIR are as follows:
- Drops: In analysis MIR,
Drop
terminators represent conditional drops; roughly speaking, if dataflow analysis determines that the place being dropped is uninitialized, the drop will not be executed. The exact semantics of this aren’t written down anywhere, which means they are essentially “what drop elaboration does.” In runtime MIR, the drops are unconditional; when aDrop
terminator is reached, if the type has drop glue that drop glue is always executed. This may be UB if the underlying place is not initialized. - Packed drops: Places might in general be misaligned - in most cases this is UB, the exception
is fields of packed structs. In analysis MIR,
Drop(P)
for aP
that might be misaligned for this reason implicitly movesP
to a temporary before dropping. Runtime MIR has no such rules, and dropping a misaligned place is simply UB. - Unwinding: in analysis MIR, unwinding from a function which may not unwind aborts. In runtime MIR, this is UB.
- Retags: If
-Zmir-emit-retag
is enabled, analysis MIR has “implicit” retags in the same way that Rust itself has them. Where exactly these are is generally subject to change, and so we don’t document this here. Runtime MIR has most retags explicit (though implicit retags can still occur atRvalue::{Ref,AddrOf}
). - Generator bodies: In analysis MIR, locals may actually be behind a pointer that user code has access to. This occurs in generator bodies. Such locals do not behave like other locals, because they eg may be aliased in surprising ways. Runtime MIR has no such special locals - all generator bodies are lowered and so all places that look like locals really are locals.
Also note that the lint pass which reports eg 200_u8 + 200_u8
as an error is run as a part
of analysis to runtime MIR lowering. To ensure lints are reported reliably, this means that
transformations which may suppress such errors should not run on analysis MIR.