pub struct Box<T: ?Sized, A: Allocator = Global>(/* private fields */);
Expand description
A pointer type for heap allocation.
See the module-level documentation for more.
Implementations§
Source§impl<T> Box<T>
impl<T> Box<T>
Sourcepub fn new(x: T) -> Self
pub fn new(x: T) -> Self
Allocates memory on the heap and then places x
into it.
This doesn’t actually allocate if T
is zero-sized.
§Examples
let five = Box::new(5);
Sourcepub fn new_uninit() -> Box<MaybeUninit<T>> ⓘ
pub fn new_uninit() -> Box<MaybeUninit<T>> ⓘ
Constructs a new box with uninitialized contents.
§Examples
#![feature(new_uninit)]
let mut five = Box::<u32>::new_uninit();
let five = unsafe {
// Deferred initialization:
five.as_mut_ptr().write(5);
five.assume_init()
};
assert_eq!(*five, 5)
Sourcepub fn new_zeroed() -> Box<MaybeUninit<T>> ⓘ
pub fn new_zeroed() -> Box<MaybeUninit<T>> ⓘ
Constructs a new Box
with uninitialized contents, with the memory
being filled with 0
bytes.
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(new_uninit)]
let zero = Box::<u32>::new_zeroed();
let zero = unsafe { zero.assume_init() };
assert_eq!(*zero, 0)
Sourcepub fn pin(x: T) -> Pin<Box<T>>
pub fn pin(x: T) -> Pin<Box<T>>
Constructs a new Pin<Box<T>>
. If T
does not implement Unpin
, then
x
will be pinned in memory and unable to be moved.
Constructing and pinning of the Box
can also be done in two steps: Box::pin(x)
does the same as Box::into_pin(Box::new(x))
. Consider using
into_pin
if you already have a Box<T>
, or if you want to
construct a (pinned) Box
in a different way than with Box::new
.
Sourcepub fn try_new(x: T) -> Result<Self, AllocError>
pub fn try_new(x: T) -> Result<Self, AllocError>
Allocates memory on the heap then places x
into it,
returning an error if the allocation fails
This doesn’t actually allocate if T
is zero-sized.
§Examples
#![feature(allocator_api)]
let five = Box::try_new(5)?;
Sourcepub fn try_new_uninit() -> Result<Box<MaybeUninit<T>>, AllocError>
pub fn try_new_uninit() -> Result<Box<MaybeUninit<T>>, AllocError>
Constructs a new box with uninitialized contents on the heap, returning an error if the allocation fails
§Examples
#![feature(allocator_api, new_uninit)]
let mut five = Box::<u32>::try_new_uninit()?;
let five = unsafe {
// Deferred initialization:
five.as_mut_ptr().write(5);
five.assume_init()
};
assert_eq!(*five, 5);
Sourcepub fn try_new_zeroed() -> Result<Box<MaybeUninit<T>>, AllocError>
pub fn try_new_zeroed() -> Result<Box<MaybeUninit<T>>, AllocError>
Constructs a new Box
with uninitialized contents, with the memory
being filled with 0
bytes on the heap
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
let zero = Box::<u32>::try_new_zeroed()?;
let zero = unsafe { zero.assume_init() };
assert_eq!(*zero, 0);
Source§impl<T, A: Allocator> Box<T, A>
impl<T, A: Allocator> Box<T, A>
Sourcepub fn new_in(x: T, alloc: A) -> Selfwhere
A: Allocator,
pub fn new_in(x: T, alloc: A) -> Selfwhere
A: Allocator,
Allocates memory in the given allocator then places x
into it.
This doesn’t actually allocate if T
is zero-sized.
§Examples
#![feature(allocator_api)]
use std::alloc::System;
let five = Box::new_in(5, System);
Sourcepub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>where
A: Allocator,
pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>where
A: Allocator,
Allocates memory in the given allocator then places x
into it,
returning an error if the allocation fails
This doesn’t actually allocate if T
is zero-sized.
§Examples
#![feature(allocator_api)]
use std::alloc::System;
let five = Box::try_new_in(5, System)?;
Sourcepub fn new_uninit_in(alloc: A) -> Box<MaybeUninit<T>, A> ⓘwhere
A: Allocator,
pub fn new_uninit_in(alloc: A) -> Box<MaybeUninit<T>, A> ⓘwhere
A: Allocator,
Constructs a new box with uninitialized contents in the provided allocator.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let mut five = Box::<u32, _>::new_uninit_in(System);
let five = unsafe {
// Deferred initialization:
five.as_mut_ptr().write(5);
five.assume_init()
};
assert_eq!(*five, 5)
Sourcepub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>where
A: Allocator,
pub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>where
A: Allocator,
Constructs a new box with uninitialized contents in the provided allocator, returning an error if the allocation fails
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
let five = unsafe {
// Deferred initialization:
five.as_mut_ptr().write(5);
five.assume_init()
};
assert_eq!(*five, 5);
Sourcepub fn new_zeroed_in(alloc: A) -> Box<MaybeUninit<T>, A> ⓘwhere
A: Allocator,
pub fn new_zeroed_in(alloc: A) -> Box<MaybeUninit<T>, A> ⓘwhere
A: Allocator,
Constructs a new Box
with uninitialized contents, with the memory
being filled with 0
bytes in the provided allocator.
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let zero = Box::<u32, _>::new_zeroed_in(System);
let zero = unsafe { zero.assume_init() };
assert_eq!(*zero, 0)
Sourcepub fn try_new_zeroed_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>where
A: Allocator,
pub fn try_new_zeroed_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>where
A: Allocator,
Constructs a new Box
with uninitialized contents, with the memory
being filled with 0
bytes in the provided allocator,
returning an error if the allocation fails,
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
let zero = unsafe { zero.assume_init() };
assert_eq!(*zero, 0);
Sourcepub fn pin_in(x: T, alloc: A) -> Pin<Self>where
A: 'static + Allocator,
pub fn pin_in(x: T, alloc: A) -> Pin<Self>where
A: 'static + Allocator,
Constructs a new Pin<Box<T, A>>
. If T
does not implement Unpin
, then
x
will be pinned in memory and unable to be moved.
Constructing and pinning of the Box
can also be done in two steps: Box::pin_in(x, alloc)
does the same as Box::into_pin(Box::new_in(x, alloc))
. Consider using
into_pin
if you already have a Box<T, A>
, or if you want to
construct a (pinned) Box
in a different way than with Box::new_in
.
Sourcepub fn into_boxed_slice(boxed: Self) -> Box<[T], A> ⓘ
pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> ⓘ
Converts a Box<T>
into a Box<[T]>
This conversion does not allocate on the heap and happens in place.
Sourcepub fn into_inner(boxed: Self) -> T
pub fn into_inner(boxed: Self) -> T
Consumes the Box
, returning the wrapped value.
§Examples
#![feature(box_into_inner)]
let c = Box::new(5);
assert_eq!(Box::into_inner(c), 5);
Source§impl<T> Box<[T]>
impl<T> Box<[T]>
Sourcepub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]> ⓘ
pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]> ⓘ
Constructs a new boxed slice with uninitialized contents.
§Examples
#![feature(new_uninit)]
let mut values = Box::<[u32]>::new_uninit_slice(3);
let values = unsafe {
// Deferred initialization:
values[0].as_mut_ptr().write(1);
values[1].as_mut_ptr().write(2);
values[2].as_mut_ptr().write(3);
values.assume_init()
};
assert_eq!(*values, [1, 2, 3])
Sourcepub fn new_zeroed_slice(len: usize) -> Box<[MaybeUninit<T>]> ⓘ
pub fn new_zeroed_slice(len: usize) -> Box<[MaybeUninit<T>]> ⓘ
Constructs a new boxed slice with uninitialized contents, with the memory
being filled with 0
bytes.
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(new_uninit)]
let values = Box::<[u32]>::new_zeroed_slice(3);
let values = unsafe { values.assume_init() };
assert_eq!(*values, [0, 0, 0])
Sourcepub fn try_new_uninit_slice(
len: usize,
) -> Result<Box<[MaybeUninit<T>]>, AllocError>
pub fn try_new_uninit_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>
Constructs a new boxed slice with uninitialized contents. Returns an error if the allocation fails
§Examples
#![feature(allocator_api, new_uninit)]
let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
let values = unsafe {
// Deferred initialization:
values[0].as_mut_ptr().write(1);
values[1].as_mut_ptr().write(2);
values[2].as_mut_ptr().write(3);
values.assume_init()
};
assert_eq!(*values, [1, 2, 3]);
Sourcepub fn try_new_zeroed_slice(
len: usize,
) -> Result<Box<[MaybeUninit<T>]>, AllocError>
pub fn try_new_zeroed_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>
Constructs a new boxed slice with uninitialized contents, with the memory
being filled with 0
bytes. Returns an error if the allocation fails
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
let values = unsafe { values.assume_init() };
assert_eq!(*values, [0, 0, 0]);
Source§impl<T, A: Allocator> Box<[T], A>
impl<T, A: Allocator> Box<[T], A>
Sourcepub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A> ⓘ
pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A> ⓘ
Constructs a new boxed slice with uninitialized contents in the provided allocator.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
let values = unsafe {
// Deferred initialization:
values[0].as_mut_ptr().write(1);
values[1].as_mut_ptr().write(2);
values[2].as_mut_ptr().write(3);
values.assume_init()
};
assert_eq!(*values, [1, 2, 3])
Sourcepub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A> ⓘ
pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A> ⓘ
Constructs a new boxed slice with uninitialized contents in the provided allocator,
with the memory being filled with 0
bytes.
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
let values = unsafe { values.assume_init() };
assert_eq!(*values, [0, 0, 0])
Sourcepub fn try_new_uninit_slice_in(
len: usize,
alloc: A,
) -> Result<Box<[MaybeUninit<T>], A>, AllocError>
pub fn try_new_uninit_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>
Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if the allocation fails.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
let values = unsafe {
// Deferred initialization:
values[0].as_mut_ptr().write(1);
values[1].as_mut_ptr().write(2);
values[2].as_mut_ptr().write(3);
values.assume_init()
};
assert_eq!(*values, [1, 2, 3]);
Sourcepub fn try_new_zeroed_slice_in(
len: usize,
alloc: A,
) -> Result<Box<[MaybeUninit<T>], A>, AllocError>
pub fn try_new_zeroed_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>
Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
being filled with 0
bytes. Returns an error if the allocation fails.
See MaybeUninit::zeroed
for examples of correct and incorrect usage
of this method.
§Examples
#![feature(allocator_api, new_uninit)]
use std::alloc::System;
let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
let values = unsafe { values.assume_init() };
assert_eq!(*values, [0, 0, 0]);
Sourcepub fn into_vec(self) -> Vec<T, A>where
A: Allocator,
pub fn into_vec(self) -> Vec<T, A>where
A: Allocator,
Converts self
into a vector without clones or allocation.
The resulting vector can be converted back into a box via
Vec<T>
’s into_boxed_slice
method.
§Examples
let s: Box<[i32]> = Box::new([10, 40, 30]);
let x = s.into_vec();
// `s` cannot be used anymore because it has been converted into `x`.
assert_eq!(x, vec![10, 40, 30]);
Source§impl<T, A: Allocator> Box<MaybeUninit<T>, A>
impl<T, A: Allocator> Box<MaybeUninit<T>, A>
Sourcepub unsafe fn assume_init(self) -> Box<T, A> ⓘ
pub unsafe fn assume_init(self) -> Box<T, A> ⓘ
Converts to Box<T, A>
.
§Safety
As with MaybeUninit::assume_init
,
it is up to the caller to guarantee that the value
really is in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
§Examples
#![feature(new_uninit)]
let mut five = Box::<u32>::new_uninit();
let five: Box<u32> = unsafe {
// Deferred initialization:
five.as_mut_ptr().write(5);
five.assume_init()
};
assert_eq!(*five, 5)
Sourcepub fn write(boxed: Self, value: T) -> Box<T, A> ⓘ
pub fn write(boxed: Self, value: T) -> Box<T, A> ⓘ
Writes the value and converts to Box<T, A>
.
This method converts the box similarly to Box::assume_init
but
writes value
into it before conversion thus guaranteeing safety.
In some scenarios use of this method may improve performance because
the compiler may be able to optimize copying from stack.
§Examples
#![feature(new_uninit)]
let big_box = Box::<[usize; 1024]>::new_uninit();
let mut array = [0; 1024];
for (i, place) in array.iter_mut().enumerate() {
*place = i;
}
// The optimizer may be able to elide this copy, so previous code writes
// to heap directly.
let big_box = Box::write(big_box, array);
for (i, x) in big_box.iter().enumerate() {
assert_eq!(*x, i);
}
Source§impl<T, A: Allocator> Box<[MaybeUninit<T>], A>
impl<T, A: Allocator> Box<[MaybeUninit<T>], A>
Sourcepub unsafe fn assume_init(self) -> Box<[T], A> ⓘ
pub unsafe fn assume_init(self) -> Box<[T], A> ⓘ
Converts to Box<[T], A>
.
§Safety
As with MaybeUninit::assume_init
,
it is up to the caller to guarantee that the values
really are in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
§Examples
#![feature(new_uninit)]
let mut values = Box::<[u32]>::new_uninit_slice(3);
let values = unsafe {
// Deferred initialization:
values[0].as_mut_ptr().write(1);
values[1].as_mut_ptr().write(2);
values[2].as_mut_ptr().write(3);
values.assume_init()
};
assert_eq!(*values, [1, 2, 3])
Source§impl<T: ?Sized> Box<T>
impl<T: ?Sized> Box<T>
Sourcepub unsafe fn from_raw(raw: *mut T) -> Self
pub unsafe fn from_raw(raw: *mut T) -> Self
Constructs a box from a raw pointer.
After calling this function, the raw pointer is owned by the
resulting Box
. Specifically, the Box
destructor will call
the destructor of T
and free the allocated memory. For this
to be safe, the memory must have been allocated in accordance
with the memory layout used by Box
.
§Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
The safety conditions are described in the memory layout section.
§Examples
Recreate a Box
which was previously converted to a raw pointer
using Box::into_raw
:
let x = Box::new(5);
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };
Manually create a Box
from scratch by using the global allocator:
use std::alloc::{alloc, Layout};
unsafe {
let ptr = alloc(Layout::new::<i32>()) as *mut i32;
// In general .write is required to avoid attempting to destruct
// the (uninitialized) previous contents of `ptr`, though for this
// simple example `*ptr = 5` would have worked as well.
ptr.write(5);
let x = Box::from_raw(ptr);
}
Source§impl<T: ?Sized, A: Allocator> Box<T, A>
impl<T: ?Sized, A: Allocator> Box<T, A>
Sourcepub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self
pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self
Constructs a box from a raw pointer in the given allocator.
After calling this function, the raw pointer is owned by the
resulting Box
. Specifically, the Box
destructor will call
the destructor of T
and free the allocated memory. For this
to be safe, the memory must have been allocated in accordance
with the memory layout used by Box
.
§Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
§Examples
Recreate a Box
which was previously converted to a raw pointer
using Box::into_raw_with_allocator
:
use std::alloc::System;
let x = Box::new_in(5, System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };
Manually create a Box
from scratch by using the system allocator:
use allocator_api2::alloc::{Allocator, Layout, System};
unsafe {
let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
// In general .write is required to avoid attempting to destruct
// the (uninitialized) previous contents of `ptr`, though for this
// simple example `*ptr = 5` would have worked as well.
ptr.write(5);
let x = Box::from_raw_in(ptr, System);
}
Sourcepub fn into_raw(b: Self) -> *mut T
pub fn into_raw(b: Self) -> *mut T
Consumes the Box
, returning a wrapped raw pointer.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the
memory previously managed by the Box
. In particular, the
caller should properly destroy T
and release the memory, taking
into account the memory layout used by Box
. The easiest way to
do this is to convert the raw pointer back into a Box
with the
Box::from_raw
function, allowing the Box
destructor to perform
the cleanup.
Note: this is an associated function, which means that you have
to call it as Box::into_raw(b)
instead of b.into_raw()
. This
is so that there is no conflict with a method on the inner type.
§Examples
Converting the raw pointer back into a Box
with Box::from_raw
for automatic cleanup:
let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };
Manual cleanup by explicitly running the destructor and deallocating the memory:
use std::alloc::{dealloc, Layout};
use std::ptr;
let x = Box::new(String::from("Hello"));
let p = Box::into_raw(x);
unsafe {
ptr::drop_in_place(p);
dealloc(p as *mut u8, Layout::new::<String>());
}
Sourcepub fn into_raw_with_allocator(b: Self) -> (*mut T, A)
pub fn into_raw_with_allocator(b: Self) -> (*mut T, A)
Consumes the Box
, returning a wrapped raw pointer and the allocator.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the
memory previously managed by the Box
. In particular, the
caller should properly destroy T
and release the memory, taking
into account the memory layout used by Box
. The easiest way to
do this is to convert the raw pointer back into a Box
with the
Box::from_raw_in
function, allowing the Box
destructor to perform
the cleanup.
Note: this is an associated function, which means that you have
to call it as Box::into_raw_with_allocator(b)
instead of b.into_raw_with_allocator()
. This
is so that there is no conflict with a method on the inner type.
§Examples
Converting the raw pointer back into a Box
with Box::from_raw_in
for automatic cleanup:
#![feature(allocator_api)]
use std::alloc::System;
let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };
Manual cleanup by explicitly running the destructor and deallocating the memory:
#![feature(allocator_api)]
use std::alloc::{Allocator, Layout, System};
use std::ptr::{self, NonNull};
let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
unsafe {
ptr::drop_in_place(ptr);
let non_null = NonNull::new_unchecked(ptr);
alloc.deallocate(non_null.cast(), Layout::new::<String>());
}
pub fn into_non_null(b: Self) -> (NonNull<T>, A)
Sourcepub const fn allocator(b: &Self) -> &A
pub const fn allocator(b: &Self) -> &A
Returns a reference to the underlying allocator.
Note: this is an associated function, which means that you have
to call it as Box::allocator(&b)
instead of b.allocator()
. This
is so that there is no conflict with a method on the inner type.
Sourcepub fn leak<'a>(b: Self) -> &'a mut Twhere
A: 'a,
pub fn leak<'a>(b: Self) -> &'a mut Twhere
A: 'a,
Consumes and leaks the Box
, returning a mutable reference,
&'a mut T
. Note that the type T
must outlive the chosen lifetime
'a
. If the type has only static references, or none at all, then this
may be chosen to be 'static
.
This function is mainly useful for data that lives for the remainder of
the program’s life. Dropping the returned reference will cause a memory
leak. If this is not acceptable, the reference should first be wrapped
with the Box::from_raw
function producing a Box
. This Box
can
then be dropped which will properly destroy T
and release the
allocated memory.
Note: this is an associated function, which means that you have
to call it as Box::leak(b)
instead of b.leak()
. This
is so that there is no conflict with a method on the inner type.
§Examples
Simple usage:
let x = Box::new(41);
let static_ref: &'static mut usize = Box::leak(x);
*static_ref += 1;
assert_eq!(*static_ref, 42);
Unsized data:
let x = vec![1, 2, 3].into_boxed_slice();
let static_ref = Box::leak(x);
static_ref[0] = 4;
assert_eq!(*static_ref, [4, 2, 3]);
Sourcepub fn into_pin(boxed: Self) -> Pin<Self>where
A: 'static,
pub fn into_pin(boxed: Self) -> Pin<Self>where
A: 'static,
Converts a Box<T>
into a Pin<Box<T>>
. If T
does not implement Unpin
, then
*boxed
will be pinned in memory and unable to be moved.
This conversion does not allocate on the heap and happens in place.
This is also available via From
.
Constructing and pinning a Box
with Box::into_pin(Box::new(x))
can also be written more concisely using Box::pin(x)
.
This into_pin
method is useful if you already have a Box<T>
, or you are
constructing a (pinned) Box
in a different way than with Box::new
.
§Notes
It’s not recommended that crates add an impl like From<Box<T>> for Pin<T>
,
as it’ll introduce an ambiguity when calling Pin::from
.
A demonstration of such a poor impl is shown below.
struct Foo; // A type defined in this crate.
impl From<Box<()>> for Pin<Foo> {
fn from(_: Box<()>) -> Pin<Foo> {
Pin::new(Foo)
}
}
let foo = Box::new(());
let bar = Pin::from(foo);
Source§impl<A: Allocator> Box<dyn Any, A>
impl<A: Allocator> Box<dyn Any, A>
Sourcepub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
Attempt to downcast the box to a concrete type.
§Examples
use std::any::Any;
fn print_if_string(value: Box<dyn Any>) {
if let Ok(string) = value.downcast::<String>() {
println!("String ({}): {}", string.len(), string);
}
}
let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Sourcepub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
Downcasts the box to a concrete type.
For a safe alternative see downcast
.
§Examples
#![feature(downcast_unchecked)]
use std::any::Any;
let x: Box<dyn Any> = Box::new(1_usize);
unsafe {
assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety
The contained value must be of type T
. Calling this method
with the incorrect type is undefined behavior.
Source§impl<A: Allocator> Box<dyn Any + Send, A>
impl<A: Allocator> Box<dyn Any + Send, A>
Sourcepub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
Attempt to downcast the box to a concrete type.
§Examples
use std::any::Any;
fn print_if_string(value: Box<dyn Any + Send>) {
if let Ok(string) = value.downcast::<String>() {
println!("String ({}): {}", string.len(), string);
}
}
let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Sourcepub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
Downcasts the box to a concrete type.
For a safe alternative see downcast
.
§Examples
#![feature(downcast_unchecked)]
use std::any::Any;
let x: Box<dyn Any + Send> = Box::new(1_usize);
unsafe {
assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety
The contained value must be of type T
. Calling this method
with the incorrect type is undefined behavior.
Source§impl<A: Allocator> Box<dyn Any + Send + Sync, A>
impl<A: Allocator> Box<dyn Any + Send + Sync, A>
Sourcepub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>
Attempt to downcast the box to a concrete type.
§Examples
use std::any::Any;
fn print_if_string(value: Box<dyn Any + Send + Sync>) {
if let Ok(string) = value.downcast::<String>() {
println!("String ({}): {}", string.len(), string);
}
}
let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Sourcepub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> ⓘ
Downcasts the box to a concrete type.
For a safe alternative see downcast
.
§Examples
#![feature(downcast_unchecked)]
use std::any::Any;
let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
unsafe {
assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety
The contained value must be of type T
. Calling this method
with the incorrect type is undefined behavior.
Trait Implementations§
Source§impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A>
impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A>
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A>
impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A>
Source§fn clone(&self) -> Self
fn clone(&self) -> Self
Returns a new box with a clone()
of this box’s contents.
§Examples
let x = Box::new(5);
let y = x.clone();
// The value is the same
assert_eq!(x, y);
// But they are unique objects
assert_ne!(&*x as *const i32, &*y as *const i32);
Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Copies source
’s contents into self
without creating a new allocation.
§Examples
let x = Box::new(5);
let mut y = Box::new(10);
let yp: *const i32 = &*y;
y.clone_from(&x);
// The value is the same
assert_eq!(x, y);
// And no allocation occurred
assert_eq!(yp, &*y);
Source§impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A>
impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A>
Source§fn next_back(&mut self) -> Option<I::Item>
fn next_back(&mut self) -> Option<I::Item>
Source§fn nth_back(&mut self, n: usize) -> Option<I::Item>
fn nth_back(&mut self, n: usize) -> Option<I::Item>
n
th element from the end of the iterator. Read moreSource§fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>>
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>>
iter_advance_by
)n
elements. Read more1.27.0 · Source§fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
Iterator::try_fold()
: it takes
elements starting from the back of the iterator. Read moreSource§impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A>
impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A>
Source§impl<A: Allocator> Extend<Box<str, A>> for String
impl<A: Allocator> Extend<Box<str, A>> for String
Source§fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A>
impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A>
Source§fn from(slice: &[T]) -> Box<[T], A> ⓘ
fn from(slice: &[T]) -> Box<[T], A> ⓘ
Converts a &[T]
into a Box<[T]>
This conversion allocates on the heap
and performs a copy of slice
and its contents.
§Examples
// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice: Box<[u8]> = Box::from(slice);
println!("{boxed_slice:?}");
Source§impl<T: ?Sized, A> From<Box<T, A>> for Pin<Box<T, A>>where
A: 'static + Allocator,
impl<T: ?Sized, A> From<Box<T, A>> for Pin<Box<T, A>>where
A: 'static + Allocator,
Source§fn from(boxed: Box<T, A>) -> Self
fn from(boxed: Box<T, A>) -> Self
Converts a Box<T>
into a Pin<Box<T>>
. If T
does not implement Unpin
, then
*boxed
will be pinned in memory and unable to be moved.
This conversion does not allocate on the heap and happens in place.
This is also available via Box::into_pin
.
Constructing and pinning a Box
with <Pin<Box<T>>>::from(Box::new(x))
can also be written more concisely using Box::pin(x)
.
This From
implementation is useful if you already have a Box<T>
, or you are
constructing a (pinned) Box
in a different way than with Box::new
.
Source§impl<A: Allocator> From<Box<str, A>> for Box<[u8], A>
impl<A: Allocator> From<Box<str, A>> for Box<[u8], A>
Source§fn from(s: Box<str, A>) -> Self
fn from(s: Box<str, A>) -> Self
Converts a Box<str>
into a Box<[u8]>
This conversion does not allocate on the heap and happens in place.
§Examples
// create a Box<str> which will be used to create a Box<[u8]>
let boxed: Box<str> = Box::from("hello");
let boxed_str: Box<[u8]> = Box::from(boxed);
// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice = Box::from(slice);
assert_eq!(boxed_slice, boxed_str);
Source§impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A>
impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A>
Source§fn from(v: Vec<T, A>) -> Self
fn from(v: Vec<T, A>) -> Self
Convert a vector into a boxed slice.
If v
has excess capacity, its items will be moved into a
newly-allocated buffer with exactly the right capacity.
§Examples
assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
Any excess capacity is removed:
let mut vec = Vec::with_capacity(10);
vec.extend([1, 2, 3]);
assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
Source§impl<I> FromIterator<I> for Box<[I]>
impl<I> FromIterator<I> for Box<[I]>
Source§fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self
fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self
Source§impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A>
impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A>
Source§fn write_u128(&mut self, i: u128)
fn write_u128(&mut self, i: u128)
u128
into this hasher.Source§fn write_usize(&mut self, i: usize)
fn write_usize(&mut self, i: usize)
usize
into this hasher.Source§fn write_i128(&mut self, i: i128)
fn write_i128(&mut self, i: i128)
i128
into this hasher.Source§fn write_isize(&mut self, i: isize)
fn write_isize(&mut self, i: isize)
isize
into this hasher.Source§fn write_length_prefix(&mut self, len: usize)
fn write_length_prefix(&mut self, len: usize)
hasher_prefixfree_extras
)Source§impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A>
impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A>
Source§fn next(&mut self) -> Option<I::Item>
fn next(&mut self) -> Option<I::Item>
Source§fn size_hint(&self) -> (usize, Option<usize>)
fn size_hint(&self) -> (usize, Option<usize>)
Source§fn nth(&mut self, n: usize) -> Option<I::Item>
fn nth(&mut self, n: usize) -> Option<I::Item>
n
th element of the iterator. Read moreSource§fn next_chunk<const N: usize>(
&mut self,
) -> Result<[Self::Item; N], IntoIter<Self::Item, N>>where
Self: Sized,
fn next_chunk<const N: usize>(
&mut self,
) -> Result<[Self::Item; N], IntoIter<Self::Item, N>>where
Self: Sized,
iter_next_chunk
)N
values. Read more1.0.0 · Source§fn count(self) -> usizewhere
Self: Sized,
fn count(self) -> usizewhere
Self: Sized,
Source§fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>
fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>
iter_advance_by
)n
elements. Read more1.28.0 · Source§fn step_by(self, step: usize) -> StepBy<Self>where
Self: Sized,
fn step_by(self, step: usize) -> StepBy<Self>where
Self: Sized,
1.0.0 · Source§fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
1.0.0 · Source§fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter>where
Self: Sized,
U: IntoIterator,
fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter>where
Self: Sized,
U: IntoIterator,
Source§fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
iter_intersperse
)separator
between adjacent
items of the original iterator. Read moreSource§fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
iter_intersperse
)separator
between adjacent items of the original iterator. Read more1.0.0 · Source§fn map<B, F>(self, f: F) -> Map<Self, F>
fn map<B, F>(self, f: F) -> Map<Self, F>
1.0.0 · Source§fn filter<P>(self, predicate: P) -> Filter<Self, P>
fn filter<P>(self, predicate: P) -> Filter<Self, P>
1.0.0 · Source§fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
1.0.0 · Source§fn enumerate(self) -> Enumerate<Self>where
Self: Sized,
fn enumerate(self) -> Enumerate<Self>where
Self: Sized,
1.0.0 · Source§fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1.0.0 · Source§fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1.57.0 · Source§fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1.0.0 · Source§fn skip(self, n: usize) -> Skip<Self>where
Self: Sized,
fn skip(self, n: usize) -> Skip<Self>where
Self: Sized,
n
elements. Read more1.0.0 · Source§fn take(self, n: usize) -> Take<Self>where
Self: Sized,
fn take(self, n: usize) -> Take<Self>where
Self: Sized,
n
elements, or fewer
if the underlying iterator ends sooner. Read more1.0.0 · Source§fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1.29.0 · Source§fn flatten(self) -> Flatten<Self>
fn flatten(self) -> Flatten<Self>
Source§fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
iter_map_windows
)f
for each contiguous window of size N
over
self
and returns an iterator over the outputs of f
. Like slice::windows()
,
the windows during mapping overlap as well. Read more1.0.0 · Source§fn inspect<F>(self, f: F) -> Inspect<Self, F>
fn inspect<F>(self, f: F) -> Inspect<Self, F>
1.0.0 · Source§fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
Source§fn try_collect<B>(
&mut self,
) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
fn try_collect<B>( &mut self, ) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
iterator_try_collect
)Source§fn collect_into<E>(self, collection: &mut E) -> &mut E
fn collect_into<E>(self, collection: &mut E) -> &mut E
iter_collect_into
)1.0.0 · Source§fn partition<B, F>(self, f: F) -> (B, B)
fn partition<B, F>(self, f: F) -> (B, B)
Source§fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
iter_partition_in_place
)true
precede all those that return false
.
Returns the number of true
elements found. Read moreSource§fn is_partitioned<P>(self, predicate: P) -> bool
fn is_partitioned<P>(self, predicate: P) -> bool
iter_is_partitioned
)true
precede all those that return false
. Read more1.27.0 · Source§fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
1.27.0 · Source§fn try_for_each<F, R>(&mut self, f: F) -> R
fn try_for_each<F, R>(&mut self, f: F) -> R
1.0.0 · Source§fn fold<B, F>(self, init: B, f: F) -> B
fn fold<B, F>(self, init: B, f: F) -> B
1.51.0 · Source§fn reduce<F>(self, f: F) -> Option<Self::Item>
fn reduce<F>(self, f: F) -> Option<Self::Item>
Source§fn try_reduce<R>(
&mut self,
f: impl FnMut(Self::Item, Self::Item) -> R,
) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
fn try_reduce<R>( &mut self, f: impl FnMut(Self::Item, Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
iterator_try_reduce
)1.0.0 · Source§fn all<F>(&mut self, f: F) -> bool
fn all<F>(&mut self, f: F) -> bool
1.0.0 · Source§fn any<F>(&mut self, f: F) -> bool
fn any<F>(&mut self, f: F) -> bool
1.0.0 · Source§fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
1.30.0 · Source§fn find_map<B, F>(&mut self, f: F) -> Option<B>
fn find_map<B, F>(&mut self, f: F) -> Option<B>
Source§fn try_find<R>(
&mut self,
f: impl FnMut(&Self::Item) -> R,
) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
fn try_find<R>( &mut self, f: impl FnMut(&Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
try_find
)1.0.0 · Source§fn position<P>(&mut self, predicate: P) -> Option<usize>
fn position<P>(&mut self, predicate: P) -> Option<usize>
1.0.0 · Source§fn rposition<P>(&mut self, predicate: P) -> Option<usize>
fn rposition<P>(&mut self, predicate: P) -> Option<usize>
1.0.0 · Source§fn max(self) -> Option<Self::Item>
fn max(self) -> Option<Self::Item>
1.0.0 · Source§fn min(self) -> Option<Self::Item>
fn min(self) -> Option<Self::Item>
1.6.0 · Source§fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
1.15.0 · Source§fn max_by<F>(self, compare: F) -> Option<Self::Item>
fn max_by<F>(self, compare: F) -> Option<Self::Item>
1.6.0 · Source§fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
1.15.0 · Source§fn min_by<F>(self, compare: F) -> Option<Self::Item>
fn min_by<F>(self, compare: F) -> Option<Self::Item>
1.0.0 · Source§fn rev(self) -> Rev<Self>where
Self: Sized + DoubleEndedIterator,
fn rev(self) -> Rev<Self>where
Self: Sized + DoubleEndedIterator,
1.0.0 · Source§fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
1.36.0 · Source§fn copied<'a, T>(self) -> Copied<Self>
fn copied<'a, T>(self) -> Copied<Self>
Source§fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>where
Self: Sized,
fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>where
Self: Sized,
iter_array_chunks
)N
elements of the iterator at a time. Read more1.11.0 · Source§fn product<P>(self) -> P
fn product<P>(self) -> P
Source§fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
iter_order_by
)Iterator
with those
of another with respect to the specified comparison function. Read more1.5.0 · Source§fn partial_cmp<I>(self, other: I) -> Option<Ordering>
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
PartialOrd
elements of
this Iterator
with those of another. The comparison works like short-circuit
evaluation, returning a result without comparing the remaining elements.
As soon as an order can be determined, the evaluation stops and a result is returned. Read moreSource§fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>where
Self: Sized,
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>where
Self: Sized,
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
iter_order_by
)Iterator
with those
of another with respect to the specified comparison function. Read moreSource§fn eq_by<I, F>(self, other: I, eq: F) -> bool
fn eq_by<I, F>(self, other: I, eq: F) -> bool
iter_order_by
)1.5.0 · Source§fn lt<I>(self, other: I) -> bool
fn lt<I>(self, other: I) -> bool
Iterator
are lexicographically
less than those of another. Read more1.5.0 · Source§fn le<I>(self, other: I) -> bool
fn le<I>(self, other: I) -> bool
Iterator
are lexicographically
less or equal to those of another. Read more1.5.0 · Source§fn gt<I>(self, other: I) -> bool
fn gt<I>(self, other: I) -> bool
Iterator
are lexicographically
greater than those of another. Read more1.5.0 · Source§fn ge<I>(self, other: I) -> bool
fn ge<I>(self, other: I) -> bool
Iterator
are lexicographically
greater than or equal to those of another. Read more