rustc_utils/cache.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
//! Data structures for memoizing computations.
//!
//! Contruct new caches using [`Default::default`], then construct/retrieve
//! elements with [`get`](Cache::get). `get` should only ever be used with one,
//! `compute` function[^inconsistent].
//!
//! In terms of choice,
//! - [`CopyCache`] should be used for expensive computations that create cheap
//! (i.e. small) values.
//! - [`Cache`] should be used for expensive computations that create expensive
//! (i.e. large) values.
//!
//! Both types of caches implement **recursion breaking**. In general because
//! caches are supposed to be used as simple `&` (no `mut`) the reference may be
//! freely copied, including into the `compute` closure. What this means is that
//! a `compute` may call [`get`](Cache::get) on the cache again. This is usually
//! safe and can be used to compute data structures that recursively depend on
//! one another, dynamic-programming style. However if a `get` on a key `k`
//! itself calls `get` again on the same `k` this will either create an infinite
//! recursion or an inconsistent cache[^inconsistent].
//!
//! Consider a simple example where we compute the Fibonacci Series with a
//! [`CopyCache`]:
//!
//! ```rs
//! struct Fib(CopyCache<u32, u32>);
//!
//! impl Fib {
//! fn get(&self, i: u32) -> u32 {
//! self.0.get(i, |_| {
//! if this <= 1 {
//! return this;
//! }
//! let fib_1 = self.get(this - 1);
//! let fib_2 = self.get(this - 2);
//! fib_1 + fib_2
//! })
//! }
//! }
//!
//! let cache = Fib(Default::default());
//! let fib_5 = cache.get(5);
//! ```
//!
//! This use of recursive [`get`](CopyCache::get) calls is perfectly legal.
//! However if we made an error and called `chache.get(this, ...)` (forgetting
//! the decrement) we would have created an inadvertend infinite recursion.
//!
//! To avoid this scenario both caches are implemented to detect when a
//! recursive call as described is performed and `get` will panic. If your code
//! uses recursive construction and would like to handle this case gracefully
//! use [`get_maybe_recursive`](Cache::get_maybe_recursive) instead wich returns
//! `None` from `get(k)` *iff* `k` this call (potentially transitively)
//! originates from another `get(k)` call.
//!
//! [^inconsistent]: For any given cache value `get` should only ever be used
//! with one, referentially transparent `compute` function. Essentially this
//! means running `compute(k)` should always return the same value
//! *independent of the state of it's environment*. Violation of this rule
//! can introduces non-determinism in your program.
use std::{cell::RefCell, hash::Hash, pin::Pin};
use rustc_data_structures::fx::FxHashMap as HashMap;
/// Cache for non-copyable types.
pub struct Cache<In, Out>(RefCell<HashMap<In, Option<Pin<Box<Out>>>>>);
impl<In, Out> Cache<In, Out>
where
In: Hash + Eq + Clone,
{
/// Size of the cache
pub fn len(&self) -> usize {
self.0.borrow().len()
}
/// Returns the cached value for the given key, or runs `compute` if
/// the value is not in cache.
///
/// # Panics
///
/// If this is a recursive invocation for this key.
pub fn get(&self, key: &In, compute: impl FnOnce(In) -> Out) -> &Out {
self
.get_maybe_recursive(key, compute)
.unwrap_or_else(recursion_panic)
}
#[doc(hidden)]
pub fn borrow(&self) -> std::cell::Ref<'_, HashMap<In, Option<Pin<Box<Out>>>>> {
self.0.borrow()
}
/// Returns the cached value for the given key, or runs `compute` if
/// the value is not in cache.
///
/// Returns `None` if this is a recursive invocation of `get` for key `key`.
pub fn get_maybe_recursive<'a>(
&'a self,
key: &In,
compute: impl FnOnce(In) -> Out,
) -> Option<&'a Out> {
match self.try_retrieve(key, |in_| Some(compute(in_))) {
Retrieval::Recursive => None,
Retrieval::Success(v) => Some(v),
Retrieval::Uncomputable => unreachable!(),
}
}
/// Try to retrieve a value from the cache with a potentially fallible or
/// recursive computation.
pub fn try_retrieve<'a>(
&'a self,
key: &In,
compute: impl FnOnce(In) -> Option<Out>,
) -> Retrieval<&'a Out> {
if !self.0.borrow().contains_key(&key) {
self.0.borrow_mut().insert(key.clone(), None);
if let Some(out) = compute(key.clone()) {
self.0.borrow_mut().insert(key.clone(), Some(Box::pin(out)));
} else {
self.0.borrow_mut().remove(&key);
}
}
let cache = self.0.borrow();
match cache.get(&key) {
None => Retrieval::Uncomputable,
Some(None) => Retrieval::Recursive,
Some(Some(entry)) => Retrieval::Success(
// SAFETY: because the entry is pinned, it cannot move and this pointer will
// only be invalidated if Cache is dropped. The returned reference has a lifetime
// equal to Cache, so Cache cannot be dropped before this reference goes out of scope.
unsafe { std::mem::transmute::<&'_ Out, &'a Out>(&**entry) },
),
}
}
pub fn is_in_cache(&self, key: &In) -> bool {
self.0.borrow().contains_key(key)
}
/// Safety: Invalidates all references
pub(crate) unsafe fn clear(&self) {
self.0.borrow_mut().clear()
}
}
pub enum Retrieval<T> {
Success(T),
Recursive,
Uncomputable,
}
impl<T> Retrieval<T> {
pub fn as_success(self) -> Option<T> {
match self {
Retrieval::Success(v) => Some(v),
_ => None,
}
}
}
fn recursion_panic<A>() -> A {
panic!("Recursion detected! The computation of a value tried to retrieve the same from the cache. Using `get_maybe_recursive` to handle this case gracefully.")
}
impl<In, Out> Default for Cache<In, Out> {
fn default() -> Self {
Cache(RefCell::new(HashMap::default()))
}
}
/// Cache for copyable types.
pub struct CopyCache<In, Out>(RefCell<HashMap<In, Option<Out>>>);
impl<In, Out> CopyCache<In, Out>
where
In: Hash + Eq + Clone,
Out: Copy,
{
/// Size of the cache
pub fn len(&self) -> usize {
self.0.borrow().len()
}
/// Returns the cached value for the given key, or runs `compute` if
/// the value is not in cache.
///
/// # Panics
///
/// If this is a recursive invocation for this key.
pub fn get(&self, key: &In, compute: impl FnOnce(In) -> Out) -> Out {
self
.get_maybe_recursive(key, compute)
.unwrap_or_else(recursion_panic)
}
/// Returns the cached value for the given key, or runs `compute` if
/// the value is not in cache.
///
/// Returns `None` if this is a recursive invocation of `get` for key `key`.
pub fn get_maybe_recursive(
&self,
key: &In,
compute: impl FnOnce(In) -> Out,
) -> Option<Out> {
if !self.0.borrow().contains_key(key) {
self.0.borrow_mut().insert(key.clone(), None);
let out = compute(key.clone());
self.0.borrow_mut().insert(key.clone(), Some(out));
}
*self.0.borrow_mut().get(key).expect("invariant broken")
}
}
impl<In, Out> Default for CopyCache<In, Out> {
fn default() -> Self {
CopyCache(RefCell::new(HashMap::default()))
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_cached() {
let cache: Cache<usize, usize> = Cache::default();
let x = cache.get(&0, |_| 0);
let y = cache.get(&1, |_| 1);
let z = cache.get(&0, |_| 2);
assert_eq!(*x, 0);
assert_eq!(*y, 1);
assert_eq!(*z, 0);
assert!(std::ptr::eq(x, z));
}
#[test]
fn test_recursion_breaking() {
struct RecursiveUse(Cache<i32, i32>);
impl RecursiveUse {
fn get_infinite_recursion(&self, i: i32) -> i32 {
self
.0
.get_maybe_recursive(&i, |_| i + self.get_infinite_recursion(i))
.copied()
.unwrap_or(-18)
}
fn get_safe_recursion(&self, i: i32) -> i32 {
*self.0.get(&i, |_| {
if i == 0 {
0
} else {
self.get_safe_recursion(i - 1) + i
}
})
}
}
let cache = RecursiveUse(Cache::default());
assert_eq!(cache.get_infinite_recursion(60), 42);
assert_eq!(cache.get_safe_recursion(5), 15);
}
}