1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
//! Graph algorithms.
//!
//! It is a goal to gradually migrate the algorithms to be based on graph traits
//! so that they are generally applicable. For now, some of these still require
//! the `Graph` type.

pub mod astar;
pub mod bellman_ford;
pub mod dijkstra;
pub mod dominators;
pub mod feedback_arc_set;
pub mod floyd_warshall;
pub mod isomorphism;
pub mod k_shortest_path;
pub mod matching;
pub mod simple_paths;
pub mod tred;

use std::collections::{BinaryHeap, HashMap};
use std::num::NonZeroUsize;

use crate::prelude::*;

use super::graph::IndexType;
use super::unionfind::UnionFind;
use super::visit::{
    GraphBase, GraphRef, IntoEdgeReferences, IntoNeighbors, IntoNeighborsDirected,
    IntoNodeIdentifiers, NodeCompactIndexable, NodeIndexable, Reversed, VisitMap, Visitable,
};
use super::EdgeType;
use crate::data::Element;
use crate::scored::MinScored;
use crate::visit::Walker;
use crate::visit::{Data, IntoNodeReferences, NodeRef};

pub use astar::astar;
pub use bellman_ford::{bellman_ford, find_negative_cycle};
pub use dijkstra::dijkstra;
pub use feedback_arc_set::greedy_feedback_arc_set;
pub use floyd_warshall::floyd_warshall;
pub use isomorphism::{
    is_isomorphic, is_isomorphic_matching, is_isomorphic_subgraph, is_isomorphic_subgraph_matching,
    subgraph_isomorphisms_iter,
};
pub use k_shortest_path::k_shortest_path;
pub use matching::{greedy_matching, maximum_matching, Matching};
pub use simple_paths::all_simple_paths;

/// \[Generic\] Return the number of connected components of the graph.
///
/// For a directed graph, this is the *weakly* connected components.
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::connected_components;
/// use petgraph::prelude::*;
///
/// let mut graph : Graph<(),(),Directed>= Graph::new();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
///
/// graph.extend_with_edges(&[
///     (a, b),
///     (b, c),
///     (c, d),
///     (d, a),
///     (e, f),
///     (f, g),
///     (g, h),
///     (h, e)
/// ]);
/// // a ----> b       e ----> f
/// // ^       |       ^       |
/// // |       v       |       v
/// // d <---- c       h <---- g
///
/// assert_eq!(connected_components(&graph),2);
/// graph.add_edge(b,e,());
/// assert_eq!(connected_components(&graph),1);
/// ```
pub fn connected_components<G>(g: G) -> usize
where
    G: NodeCompactIndexable + IntoEdgeReferences,
{
    let mut vertex_sets = UnionFind::new(g.node_bound());
    for edge in g.edge_references() {
        let (a, b) = (edge.source(), edge.target());

        // union the two vertices of the edge
        vertex_sets.union(g.to_index(a), g.to_index(b));
    }
    let mut labels = vertex_sets.into_labeling();
    labels.sort_unstable();
    labels.dedup();
    labels.len()
}

/// \[Generic\] Return `true` if the input graph contains a cycle.
///
/// Always treats the input graph as if undirected.
pub fn is_cyclic_undirected<G>(g: G) -> bool
where
    G: NodeIndexable + IntoEdgeReferences,
{
    let mut edge_sets = UnionFind::new(g.node_bound());
    for edge in g.edge_references() {
        let (a, b) = (edge.source(), edge.target());

        // union the two vertices of the edge
        //  -- if they were already the same, then we have a cycle
        if !edge_sets.union(g.to_index(a), g.to_index(b)) {
            return true;
        }
    }
    false
}

/// \[Generic\] Perform a topological sort of a directed graph.
///
/// If the graph was acyclic, return a vector of nodes in topological order:
/// each node is ordered before its successors.
/// Otherwise, it will return a `Cycle` error. Self loops are also cycles.
///
/// To handle graphs with cycles, use the scc algorithms or `DfsPostOrder`
/// instead of this function.
///
/// If `space` is not `None`, it is used instead of creating a new workspace for
/// graph traversal. The implementation is iterative.
pub fn toposort<G>(
    g: G,
    space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
) -> Result<Vec<G::NodeId>, Cycle<G::NodeId>>
where
    G: IntoNeighborsDirected + IntoNodeIdentifiers + Visitable,
{
    // based on kosaraju scc
    with_dfs(g, space, |dfs| {
        dfs.reset(g);
        let mut finished = g.visit_map();

        let mut finish_stack = Vec::new();
        for i in g.node_identifiers() {
            if dfs.discovered.is_visited(&i) {
                continue;
            }
            dfs.stack.push(i);
            while let Some(&nx) = dfs.stack.last() {
                if dfs.discovered.visit(nx) {
                    // First time visiting `nx`: Push neighbors, don't pop `nx`
                    for succ in g.neighbors(nx) {
                        if succ == nx {
                            // self cycle
                            return Err(Cycle(nx));
                        }
                        if !dfs.discovered.is_visited(&succ) {
                            dfs.stack.push(succ);
                        }
                    }
                } else {
                    dfs.stack.pop();
                    if finished.visit(nx) {
                        // Second time: All reachable nodes must have been finished
                        finish_stack.push(nx);
                    }
                }
            }
        }
        finish_stack.reverse();

        dfs.reset(g);
        for &i in &finish_stack {
            dfs.move_to(i);
            let mut cycle = false;
            while let Some(j) = dfs.next(Reversed(g)) {
                if cycle {
                    return Err(Cycle(j));
                }
                cycle = true;
            }
        }

        Ok(finish_stack)
    })
}

/// \[Generic\] Return `true` if the input directed graph contains a cycle.
///
/// This implementation is recursive; use `toposort` if an alternative is
/// needed.
pub fn is_cyclic_directed<G>(g: G) -> bool
where
    G: IntoNodeIdentifiers + IntoNeighbors + Visitable,
{
    use crate::visit::{depth_first_search, DfsEvent};

    depth_first_search(g, g.node_identifiers(), |event| match event {
        DfsEvent::BackEdge(_, _) => Err(()),
        _ => Ok(()),
    })
    .is_err()
}

type DfsSpaceType<G> = DfsSpace<<G as GraphBase>::NodeId, <G as Visitable>::Map>;

/// Workspace for a graph traversal.
#[derive(Clone, Debug)]
pub struct DfsSpace<N, VM> {
    dfs: Dfs<N, VM>,
}

impl<N, VM> DfsSpace<N, VM>
where
    N: Copy + PartialEq,
    VM: VisitMap<N>,
{
    pub fn new<G>(g: G) -> Self
    where
        G: GraphRef + Visitable<NodeId = N, Map = VM>,
    {
        DfsSpace { dfs: Dfs::empty(g) }
    }
}

impl<N, VM> Default for DfsSpace<N, VM>
where
    VM: VisitMap<N> + Default,
{
    fn default() -> Self {
        DfsSpace {
            dfs: Dfs {
                stack: <_>::default(),
                discovered: <_>::default(),
            },
        }
    }
}

/// Create a Dfs if it's needed
fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R
where
    G: GraphRef + Visitable,
    F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R,
{
    let mut local_visitor;
    let dfs = if let Some(v) = space {
        &mut v.dfs
    } else {
        local_visitor = Dfs::empty(g);
        &mut local_visitor
    };
    f(dfs)
}

/// \[Generic\] Check if there exists a path starting at `from` and reaching `to`.
///
/// If `from` and `to` are equal, this function returns true.
///
/// If `space` is not `None`, it is used instead of creating a new workspace for
/// graph traversal.
pub fn has_path_connecting<G>(
    g: G,
    from: G::NodeId,
    to: G::NodeId,
    space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
) -> bool
where
    G: IntoNeighbors + Visitable,
{
    with_dfs(g, space, |dfs| {
        dfs.reset(g);
        dfs.move_to(from);
        dfs.iter(g).any(|x| x == to)
    })
}

/// Renamed to `kosaraju_scc`.
#[deprecated(note = "renamed to kosaraju_scc")]
pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
    G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
    kosaraju_scc(g)
}

/// \[Generic\] Compute the *strongly connected components* using [Kosaraju's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
///
/// Return a vector where each element is a strongly connected component (scc).
/// The order of node ids within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// For an undirected graph, the sccs are simply the connected components.
///
/// This implementation is iterative and does two passes over the nodes.
pub fn kosaraju_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
    G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
    let mut dfs = DfsPostOrder::empty(g);

    // First phase, reverse dfs pass, compute finishing times.
    // http://stackoverflow.com/a/26780899/161659
    let mut finish_order = Vec::with_capacity(0);
    for i in g.node_identifiers() {
        if dfs.discovered.is_visited(&i) {
            continue;
        }

        dfs.move_to(i);
        while let Some(nx) = dfs.next(Reversed(g)) {
            finish_order.push(nx);
        }
    }

    let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered);
    dfs.reset(g);
    let mut sccs = Vec::new();

    // Second phase
    // Process in decreasing finishing time order
    for i in finish_order.into_iter().rev() {
        if dfs.discovered.is_visited(&i) {
            continue;
        }
        // Move to the leader node `i`.
        dfs.move_to(i);
        let mut scc = Vec::new();
        while let Some(nx) = dfs.next(g) {
            scc.push(nx);
        }
        sccs.push(scc);
    }
    sccs
}

#[derive(Copy, Clone, Debug)]
struct NodeData {
    rootindex: Option<NonZeroUsize>,
}

/// A reusable state for computing the *strongly connected components* using [Tarjan's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
#[derive(Debug)]
pub struct TarjanScc<N> {
    index: usize,
    componentcount: usize,
    nodes: Vec<NodeData>,
    stack: Vec<N>,
}

impl<N> Default for TarjanScc<N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<N> TarjanScc<N> {
    /// Creates a new `TarjanScc`
    pub fn new() -> Self {
        TarjanScc {
            index: 1,                        // Invariant: index < componentcount at all times.
            componentcount: std::usize::MAX, // Will hold if componentcount is initialized to number of nodes - 1 or higher.
            nodes: Vec::new(),
            stack: Vec::new(),
        }
    }

    /// \[Generic\] Compute the *strongly connected components* using Algorithm 3 in
    /// [A Space-Efficient Algorithm for Finding Strongly Connected Components][1] by David J. Pierce,
    /// which is a memory-efficient variation of [Tarjan's algorithm][2].
    ///
    ///
    /// [1]: https://homepages.ecs.vuw.ac.nz/~djp/files/P05.pdf
    /// [2]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
    ///
    /// Calls `f` for each strongly strongly connected component (scc).
    /// The order of node ids within each scc is arbitrary, but the order of
    /// the sccs is their postorder (reverse topological sort).
    ///
    /// For an undirected graph, the sccs are simply the connected components.
    ///
    /// This implementation is recursive and does one pass over the nodes.
    pub fn run<G, F>(&mut self, g: G, mut f: F)
    where
        G: IntoNodeIdentifiers<NodeId = N> + IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
        F: FnMut(&[N]),
        N: Copy + PartialEq,
    {
        self.nodes.clear();
        self.nodes
            .resize(g.node_bound(), NodeData { rootindex: None });

        for n in g.node_identifiers() {
            let visited = self.nodes[g.to_index(n)].rootindex.is_some();
            if !visited {
                self.visit(n, g, &mut f);
            }
        }

        debug_assert!(self.stack.is_empty());
    }

    fn visit<G, F>(&mut self, v: G::NodeId, g: G, f: &mut F)
    where
        G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
        F: FnMut(&[N]),
        N: Copy + PartialEq,
    {
        macro_rules! node {
            ($node:expr) => {
                self.nodes[g.to_index($node)]
            };
        }

        let node_v = &mut node![v];
        debug_assert!(node_v.rootindex.is_none());

        let mut v_is_local_root = true;
        let v_index = self.index;
        node_v.rootindex = NonZeroUsize::new(v_index);
        self.index += 1;

        for w in g.neighbors(v) {
            if node![w].rootindex.is_none() {
                self.visit(w, g, f);
            }
            if node![w].rootindex < node![v].rootindex {
                node![v].rootindex = node![w].rootindex;
                v_is_local_root = false
            }
        }

        if v_is_local_root {
            // Pop the stack and generate an SCC.
            let mut indexadjustment = 1;
            let c = NonZeroUsize::new(self.componentcount);
            let nodes = &mut self.nodes;
            let start = self
                .stack
                .iter()
                .rposition(|&w| {
                    if nodes[g.to_index(v)].rootindex > nodes[g.to_index(w)].rootindex {
                        true
                    } else {
                        nodes[g.to_index(w)].rootindex = c;
                        indexadjustment += 1;
                        false
                    }
                })
                .map(|x| x + 1)
                .unwrap_or_default();
            nodes[g.to_index(v)].rootindex = c;
            self.stack.push(v); // Pushing the component root to the back right before getting rid of it is somewhat ugly, but it lets it be included in f.
            f(&self.stack[start..]);
            self.stack.truncate(start);
            self.index -= indexadjustment; // Backtrack index back to where it was before we ever encountered the component.
            self.componentcount -= 1;
        } else {
            self.stack.push(v); // Stack is filled up when backtracking, unlike in Tarjans original algorithm.
        }
    }

    /// Returns the index of the component in which v has been assigned. Allows for using self as a lookup table for an scc decomposition produced by self.run().
    pub fn node_component_index<G>(&self, g: G, v: N) -> usize
    where
        G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
        N: Copy + PartialEq,
    {
        let rindex: usize = self.nodes[g.to_index(v)]
            .rootindex
            .map(NonZeroUsize::get)
            .unwrap_or(0); // Compiles to no-op.
        debug_assert!(
            rindex != 0,
            "Tried to get the component index of an unvisited node."
        );
        debug_assert!(
            rindex > self.componentcount,
            "Given node has been visited but not yet assigned to a component."
        );
        std::usize::MAX - rindex
    }
}

/// \[Generic\] Compute the *strongly connected components* using [Tarjan's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
/// [2]: https://homepages.ecs.vuw.ac.nz/~djp/files/P05.pdf
///
/// Return a vector where each element is a strongly connected component (scc).
/// The order of node ids within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// For an undirected graph, the sccs are simply the connected components.
///
/// This implementation is recursive and does one pass over the nodes. It is based on
/// [A Space-Efficient Algorithm for Finding Strongly Connected Components][2] by David J. Pierce,
/// to provide a memory-efficient implementation of [Tarjan's algorithm][1].
pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
    G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,
{
    let mut sccs = Vec::new();
    {
        let mut tarjan_scc = TarjanScc::new();
        tarjan_scc.run(g, |scc| sccs.push(scc.to_vec()));
    }
    sccs
}

/// [Graph] Condense every strongly connected component into a single node and return the result.
///
/// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that
/// the output is acyclic.
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::condensation;
/// use petgraph::prelude::*;
///
/// let mut graph : Graph<(),(),Directed> = Graph::new();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
///
/// graph.extend_with_edges(&[
///     (a, b),
///     (b, c),
///     (c, d),
///     (d, a),
///     (b, e),
///     (e, f),
///     (f, g),
///     (g, h),
///     (h, e)
/// ]);
///
/// // a ----> b ----> e ----> f
/// // ^       |       ^       |
/// // |       v       |       v
/// // d <---- c       h <---- g
///
/// let condensed_graph = condensation(graph,false);
/// let A = NodeIndex::new(0);
/// let B = NodeIndex::new(1);
/// assert_eq!(condensed_graph.node_count(), 2);
/// assert_eq!(condensed_graph.edge_count(), 9);
/// assert_eq!(condensed_graph.neighbors(A).collect::<Vec<_>>(), vec![A, A, A, A]);
/// assert_eq!(condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A, B, B, B, B]);
/// ```
/// If `make_acyclic` is true, self-loops and multi edges are ignored:
///
/// ```rust
/// # use petgraph::Graph;
/// # use petgraph::algo::condensation;
/// # use petgraph::prelude::*;
/// #
/// # let mut graph : Graph<(),(),Directed> = Graph::new();
/// # let a = graph.add_node(()); // node with no weight
/// # let b = graph.add_node(());
/// # let c = graph.add_node(());
/// # let d = graph.add_node(());
/// # let e = graph.add_node(());
/// # let f = graph.add_node(());
/// # let g = graph.add_node(());
/// # let h = graph.add_node(());
/// #
/// # graph.extend_with_edges(&[
/// #    (a, b),
/// #    (b, c),
/// #    (c, d),
/// #    (d, a),
/// #    (b, e),
/// #    (e, f),
/// #    (f, g),
/// #    (g, h),
/// #    (h, e)
/// # ]);
/// let acyclic_condensed_graph = condensation(graph, true);
/// let A = NodeIndex::new(0);
/// let B = NodeIndex::new(1);
/// assert_eq!(acyclic_condensed_graph.node_count(), 2);
/// assert_eq!(acyclic_condensed_graph.edge_count(), 1);
/// assert_eq!(acyclic_condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A]);
/// ```
pub fn condensation<N, E, Ty, Ix>(
    g: Graph<N, E, Ty, Ix>,
    make_acyclic: bool,
) -> Graph<Vec<N>, E, Ty, Ix>
where
    Ty: EdgeType,
    Ix: IndexType,
{
    let sccs = kosaraju_scc(&g);
    let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());

    // Build a map from old indices to new ones.
    let mut node_map = vec![NodeIndex::end(); g.node_count()];
    for comp in sccs {
        let new_nix = condensed.add_node(Vec::new());
        for nix in comp {
            node_map[nix.index()] = new_nix;
        }
    }

    // Consume nodes and edges of the old graph and insert them into the new one.
    let (nodes, edges) = g.into_nodes_edges();
    for (nix, node) in nodes.into_iter().enumerate() {
        condensed[node_map[nix]].push(node.weight);
    }
    for edge in edges {
        let source = node_map[edge.source().index()];
        let target = node_map[edge.target().index()];
        if make_acyclic {
            if source != target {
                condensed.update_edge(source, target, edge.weight);
            }
        } else {
            condensed.add_edge(source, target, edge.weight);
        }
    }
    condensed
}

/// \[Generic\] Compute a *minimum spanning tree* of a graph.
///
/// The input graph is treated as if undirected.
///
/// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually
/// return a minimum spanning forest, i.e. a minimum spanning tree for each connected
/// component of the graph.
///
/// The resulting graph has all the vertices of the input graph (with identical node indices),
/// and **|V| - c** edges, where **c** is the number of connected components in `g`.
///
/// Use `from_elements` to create a graph from the resulting iterator.
pub fn min_spanning_tree<G>(g: G) -> MinSpanningTree<G>
where
    G::NodeWeight: Clone,
    G::EdgeWeight: Clone + PartialOrd,
    G: IntoNodeReferences + IntoEdgeReferences + NodeIndexable,
{
    // Initially each vertex is its own disjoint subgraph, track the connectedness
    // of the pre-MST with a union & find datastructure.
    let subgraphs = UnionFind::new(g.node_bound());

    let edges = g.edge_references();
    let mut sort_edges = BinaryHeap::with_capacity(edges.size_hint().0);
    for edge in edges {
        sort_edges.push(MinScored(
            edge.weight().clone(),
            (edge.source(), edge.target()),
        ));
    }

    MinSpanningTree {
        graph: g,
        node_ids: Some(g.node_references()),
        subgraphs,
        sort_edges,
        node_map: HashMap::new(),
        node_count: 0,
    }
}

/// An iterator producing a minimum spanning forest of a graph.
#[derive(Debug, Clone)]
pub struct MinSpanningTree<G>
where
    G: Data + IntoNodeReferences,
{
    graph: G,
    node_ids: Option<G::NodeReferences>,
    subgraphs: UnionFind<usize>,
    #[allow(clippy::type_complexity)]
    sort_edges: BinaryHeap<MinScored<G::EdgeWeight, (G::NodeId, G::NodeId)>>,
    node_map: HashMap<usize, usize>,
    node_count: usize,
}

impl<G> Iterator for MinSpanningTree<G>
where
    G: IntoNodeReferences + NodeIndexable,
    G::NodeWeight: Clone,
    G::EdgeWeight: PartialOrd,
{
    type Item = Element<G::NodeWeight, G::EdgeWeight>;

    fn next(&mut self) -> Option<Self::Item> {
        let g = self.graph;
        if let Some(ref mut iter) = self.node_ids {
            if let Some(node) = iter.next() {
                self.node_map.insert(g.to_index(node.id()), self.node_count);
                self.node_count += 1;
                return Some(Element::Node {
                    weight: node.weight().clone(),
                });
            }
        }
        self.node_ids = None;

        // Kruskal's algorithm.
        // Algorithm is this:
        //
        // 1. Create a pre-MST with all the vertices and no edges.
        // 2. Repeat:
        //
        //  a. Remove the shortest edge from the original graph.
        //  b. If the edge connects two disjoint trees in the pre-MST,
        //     add the edge.
        while let Some(MinScored(score, (a, b))) = self.sort_edges.pop() {
            // check if the edge would connect two disjoint parts
            let (a_index, b_index) = (g.to_index(a), g.to_index(b));
            if self.subgraphs.union(a_index, b_index) {
                let (&a_order, &b_order) =
                    match (self.node_map.get(&a_index), self.node_map.get(&b_index)) {
                        (Some(a_id), Some(b_id)) => (a_id, b_id),
                        _ => panic!("Edge references unknown node"),
                    };
                return Some(Element::Edge {
                    source: a_order,
                    target: b_order,
                    weight: score,
                });
            }
        }
        None
    }
}

/// An algorithm error: a cycle was found in the graph.
#[derive(Clone, Debug, PartialEq)]
pub struct Cycle<N>(N);

impl<N> Cycle<N> {
    /// Return a node id that participates in the cycle
    pub fn node_id(&self) -> N
    where
        N: Copy,
    {
        self.0
    }
}

/// An algorithm error: a cycle of negative weights was found in the graph.
#[derive(Clone, Debug, PartialEq)]
pub struct NegativeCycle(pub ());

/// Return `true` if the graph is bipartite. A graph is bipartite if its nodes can be divided into
/// two disjoint and indepedent sets U and V such that every edge connects U to one in V. This
/// algorithm implements 2-coloring algorithm based on the BFS algorithm.
///
/// Always treats the input graph as if undirected.
pub fn is_bipartite_undirected<G, N, VM>(g: G, start: N) -> bool
where
    G: GraphRef + Visitable<NodeId = N, Map = VM> + IntoNeighbors<NodeId = N>,
    N: Copy + PartialEq + std::fmt::Debug,
    VM: VisitMap<N>,
{
    let mut red = g.visit_map();
    red.visit(start);
    let mut blue = g.visit_map();

    let mut stack = ::std::collections::VecDeque::new();
    stack.push_front(start);

    while let Some(node) = stack.pop_front() {
        let is_red = red.is_visited(&node);
        let is_blue = blue.is_visited(&node);

        assert!(is_red ^ is_blue);

        for neighbour in g.neighbors(node) {
            let is_neigbour_red = red.is_visited(&neighbour);
            let is_neigbour_blue = blue.is_visited(&neighbour);

            if (is_red && is_neigbour_red) || (is_blue && is_neigbour_blue) {
                return false;
            }

            if !is_neigbour_red && !is_neigbour_blue {
                //hasn't been visited yet

                match (is_red, is_blue) {
                    (true, false) => {
                        blue.visit(neighbour);
                    }
                    (false, true) => {
                        red.visit(neighbour);
                    }
                    (_, _) => {
                        panic!("Invariant doesn't hold");
                    }
                }

                stack.push_back(neighbour);
            }
        }
    }

    true
}

use std::fmt::Debug;
use std::ops::Add;

/// Associated data that can be used for measures (such as length).
pub trait Measure: Debug + PartialOrd + Add<Self, Output = Self> + Default + Clone {}

impl<M> Measure for M where M: Debug + PartialOrd + Add<M, Output = M> + Default + Clone {}

/// A floating-point measure.
pub trait FloatMeasure: Measure + Copy {
    fn zero() -> Self;
    fn infinite() -> Self;
}

impl FloatMeasure for f32 {
    fn zero() -> Self {
        0.
    }
    fn infinite() -> Self {
        1. / 0.
    }
}

impl FloatMeasure for f64 {
    fn zero() -> Self {
        0.
    }
    fn infinite() -> Self {
        1. / 0.
    }
}

pub trait BoundedMeasure: Measure + std::ops::Sub<Self, Output = Self> {
    fn min() -> Self;
    fn max() -> Self;
    fn overflowing_add(self, rhs: Self) -> (Self, bool);
}

macro_rules! impl_bounded_measure_integer(
    ( $( $t:ident ),* ) => {
        $(
            impl BoundedMeasure for $t {
                fn min() -> Self {
                    std::$t::MIN
                }

                fn max() -> Self {
                    std::$t::MAX
                }

                fn overflowing_add(self, rhs: Self) -> (Self, bool) {
                    self.overflowing_add(rhs)
                }
            }
        )*
    };
);

impl_bounded_measure_integer!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);

macro_rules! impl_bounded_measure_float(
    ( $( $t:ident ),* ) => {
        $(
            impl BoundedMeasure for $t {
                fn min() -> Self {
                    std::$t::MIN
                }

                fn max() -> Self {
                    std::$t::MAX
                }

                fn overflowing_add(self, rhs: Self) -> (Self, bool) {
                    // for an overflow: a + b > max: both values need to be positive and a > max - b must be satisfied
                    let overflow = self > Self::default() && rhs > Self::default() && self > std::$t::MAX - rhs;

                    // for an underflow: a + b < min: overflow can not happen and both values must be negative and a < min - b must be satisfied
                    let underflow = !overflow && self < Self::default() && rhs < Self::default() && self < std::$t::MIN - rhs;

                    (self + rhs, overflow || underflow)
                }
            }
        )*
    };
);

impl_bounded_measure_float!(f32, f64);