1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//! Simple adjacency list.
use crate::data::{Build, DataMap, DataMapMut};
use crate::iter_format::NoPretty;
use crate::visit::{
    self, EdgeCount, EdgeRef, GetAdjacencyMatrix, IntoEdgeReferences, IntoNeighbors, NodeCount,
};
use fixedbitset::FixedBitSet;
use std::fmt;
use std::ops::Range;

#[doc(no_inline)]
pub use crate::graph::{DefaultIx, IndexType};

/// Adjacency list node index type, a plain integer.
pub type NodeIndex<Ix = DefaultIx> = Ix;

/// Adjacency list edge index type, a pair of integers.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct EdgeIndex<Ix = DefaultIx>
where
    Ix: IndexType,
{
    /// Source of the edge.
    from: NodeIndex<Ix>,
    /// Index of the sucessor in the successor list.
    successor_index: usize,
}

iterator_wrap! {
impl (Iterator) for
/// An Iterator over the indices of the outgoing edges from a node.
///
/// It does not borrow the graph during iteration.
#[derive(Debug, Clone)]
struct OutgoingEdgeIndices <Ix> where { Ix: IndexType }
item: EdgeIndex<Ix>,
iter: std::iter::Map<std::iter::Zip<Range<usize>, std::iter::Repeat<NodeIndex<Ix>>>, fn((usize, NodeIndex<Ix>)) -> EdgeIndex<Ix>>,
}

/// Weighted sucessor
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
struct WSuc<E, Ix: IndexType> {
    /// Index of the sucessor.
    suc: Ix,
    /// Weight of the edge to `suc`.
    weight: E,
}

/// One row of the adjacency list.
type Row<E, Ix> = Vec<WSuc<E, Ix>>;
type RowIter<'a, E, Ix> = std::slice::Iter<'a, WSuc<E, Ix>>;

iterator_wrap! {
impl (Iterator DoubleEndedIterator ExactSizeIterator) for
/// An iterator over the indices of the neighbors of a node.
#[derive(Debug, Clone)]
struct Neighbors<'a, E, Ix> where { Ix: IndexType }
item: NodeIndex<Ix>,
iter: std::iter::Map<RowIter<'a, E, Ix>, fn(&WSuc<E, Ix>) -> NodeIndex<Ix>>,
}

/// A reference to an edge of the graph.
#[derive(Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct EdgeReference<'a, E, Ix: IndexType> {
    /// index of the edge
    id: EdgeIndex<Ix>,
    /// a reference to the corresponding item in the adjacency list
    edge: &'a WSuc<E, Ix>,
}

impl<'a, E, Ix: IndexType> Copy for EdgeReference<'a, E, Ix> {}
impl<'a, E, Ix: IndexType> Clone for EdgeReference<'a, E, Ix> {
    fn clone(&self) -> Self {
        EdgeReference {
            id: self.id,
            edge: self.edge,
        }
    }
}

impl<'a, E, Ix: IndexType> visit::EdgeRef for EdgeReference<'a, E, Ix> {
    type NodeId = NodeIndex<Ix>;
    type EdgeId = EdgeIndex<Ix>;
    type Weight = E;
    fn source(&self) -> Self::NodeId {
        self.id.from
    }
    fn target(&self) -> Self::NodeId {
        self.edge.suc
    }
    fn id(&self) -> Self::EdgeId {
        self.id
    }
    fn weight(&self) -> &Self::Weight {
        &self.edge.weight
    }
}

#[derive(Debug, Clone)]
pub struct EdgeIndices<'a, E, Ix: IndexType> {
    rows: std::iter::Enumerate<std::slice::Iter<'a, Row<E, Ix>>>,
    row_index: usize,
    row_len: usize,
    cur: usize,
}

impl<'a, E, Ix: IndexType> Iterator for EdgeIndices<'a, E, Ix> {
    type Item = EdgeIndex<Ix>;
    fn next(&mut self) -> Option<EdgeIndex<Ix>> {
        loop {
            if self.cur < self.row_len {
                let res = self.cur;
                self.cur += 1;
                return Some(EdgeIndex {
                    from: Ix::new(self.row_index),
                    successor_index: res,
                });
            } else {
                match self.rows.next() {
                    Some((index, row)) => {
                        self.row_index = index;
                        self.cur = 0;
                        self.row_len = row.len();
                    }
                    None => return None,
                }
            }
        }
    }
}

iterator_wrap! {
    impl (Iterator DoubleEndedIterator ExactSizeIterator) for
    /// An iterator over all node indices in the graph.
    #[derive(Debug, Clone)]
    struct NodeIndices <Ix> where {}
    item: Ix,
    iter: std::iter::Map<Range<usize>, fn(usize) -> Ix>,
}

/// An adjacency list with labeled edges.
///
/// Can be interpreted as a directed graph
/// with unweighted nodes.
///
/// This is the most simple adjacency list you can imagine. [`Graph`](../graph/struct.Graph.html), in contrast,
/// maintains both the list of successors and predecessors for each node,
/// which is a different trade-off.
///
/// Allows parallel edges and self-loops.
///
/// This data structure is append-only (except for [`clear`](#method.clear)), so indices
/// returned at some point for a given graph will stay valid with this same
/// graph until it is dropped or [`clear`](#method.clear) is called.
///
/// Space consumption: **O(|E|)**.
#[derive(Clone, Default)]
pub struct List<E, Ix = DefaultIx>
where
    Ix: IndexType,
{
    suc: Vec<Row<E, Ix>>,
}

impl<E, Ix: IndexType> List<E, Ix> {
    /// Creates a new, empty adjacency list.
    pub fn new() -> List<E, Ix> {
        List { suc: Vec::new() }
    }

    /// Creates a new, empty adjacency list tailored for `nodes` nodes.
    pub fn with_capacity(nodes: usize) -> List<E, Ix> {
        List {
            suc: Vec::with_capacity(nodes),
        }
    }

    /// Removes all nodes and edges from the list.
    pub fn clear(&mut self) {
        self.suc.clear()
    }

    /// Returns the number of edges in the list
    ///
    /// Computes in **O(|V|)** time.
    pub fn edge_count(&self) -> usize {
        self.suc.iter().map(|x| x.len()).sum()
    }

    /// Adds a new node to the list. This allocates a new `Vec` and then should
    /// run in amortized **O(1)** time.
    pub fn add_node(&mut self) -> NodeIndex<Ix> {
        let i = self.suc.len();
        self.suc.push(Vec::new());
        Ix::new(i)
    }

    /// Adds a new node to the list. This allocates a new `Vec` and then should
    /// run in amortized **O(1)** time.
    pub fn add_node_with_capacity(&mut self, successors: usize) -> NodeIndex<Ix> {
        let i = self.suc.len();
        self.suc.push(Vec::with_capacity(successors));
        Ix::new(i)
    }

    /// Adds a new node to the list by giving its list of successors and the corresponding
    /// weigths.
    pub fn add_node_from_edges<I: Iterator<Item = (NodeIndex<Ix>, E)>>(
        &mut self,
        edges: I,
    ) -> NodeIndex<Ix> {
        let i = self.suc.len();
        self.suc
            .push(edges.map(|(suc, weight)| WSuc { suc, weight }).collect());
        Ix::new(i)
    }

    /// Add an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Return the index of the new edge.
    ///
    /// Computes in **O(1)** time.
    ///
    /// **Panics** if the source node does not exist.<br>
    ///
    /// **Note:** `List` allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> {
        if b.index() >= self.suc.len() {
            panic!(
                "{} is not a valid node index for a {} nodes adjacency list",
                b.index(),
                self.suc.len()
            );
        }
        let row = &mut self.suc[a.index()];
        let rank = row.len();
        row.push(WSuc { suc: b, weight });
        EdgeIndex {
            from: a,
            successor_index: rank,
        }
    }

    fn get_edge(&self, e: EdgeIndex<Ix>) -> Option<&WSuc<E, Ix>> {
        self.suc
            .get(e.from.index())
            .and_then(|row| row.get(e.successor_index))
    }

    fn get_edge_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut WSuc<E, Ix>> {
        self.suc
            .get_mut(e.from.index())
            .and_then(|row| row.get_mut(e.successor_index))
    }

    /// Accesses the source and target of edge `e`
    ///
    /// Computes in **O(1)**
    pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> {
        self.get_edge(e).map(|x| (e.from, x.suc))
    }

    pub fn edge_indices_from(&self, a: NodeIndex<Ix>) -> OutgoingEdgeIndices<Ix> {
        let proj: fn((usize, NodeIndex<Ix>)) -> EdgeIndex<Ix> =
            |(successor_index, from)| EdgeIndex {
                from,
                successor_index,
            };
        let iter = (0..(self.suc[a.index()].len()))
            .zip(std::iter::repeat(a))
            .map(proj);
        OutgoingEdgeIndices { iter }
    }

    /// Lookups whether there is an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of successors of `a`.
    pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
        match self.suc.get(a.index()) {
            None => false,
            Some(row) => row.iter().any(|x| x.suc == b),
        }
    }

    /// Lookups whether there is an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of successors of `a`.
    pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> {
        self.suc.get(a.index()).and_then(|row| {
            row.iter()
                .enumerate()
                .find(|(_, x)| x.suc == b)
                .map(|(i, _)| EdgeIndex {
                    from: a,
                    successor_index: i,
                })
        })
    }

    /// Returns an iterator over all node indices of the graph.
    ///
    /// Consuming the whole iterator take **O(|V|)**.
    pub fn node_indices(&self) -> NodeIndices<Ix> {
        NodeIndices {
            iter: (0..self.suc.len()).map(Ix::new),
        }
    }

    /// Returns an iterator over all edge indices of the graph.
    ///
    /// Consuming the whole iterator take **O(|V| + |E|)**.
    pub fn edge_indices(&self) -> EdgeIndices<E, Ix> {
        EdgeIndices {
            rows: self.suc.iter().enumerate(),
            row_index: 0,
            row_len: 0,
            cur: 0,
        }
    }
}

/// A very simple adjacency list with no node or label weights.
pub type UnweightedList<Ix> = List<(), Ix>;

impl<E, Ix: IndexType> Build for List<E, Ix> {
    /// Adds a new node to the list. This allocates a new `Vec` and then should
    /// run in amortized **O(1)** time.
    fn add_node(&mut self, _weight: ()) -> NodeIndex<Ix> {
        self.add_node()
    }

    /// Add an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Return the index of the new edge.
    ///
    /// Computes in **O(1)** time.
    ///
    /// **Panics** if the source node does not exist.<br>
    ///
    /// **Note:** `List` allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
    fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> Option<EdgeIndex<Ix>> {
        Some(self.add_edge(a, b, weight))
    }

    /// Updates or adds an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Return the index of the new edge.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of successors of `a`.
    ///
    /// **Panics** if the source node does not exist.<br>
    fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> {
        let row = &mut self.suc[a.index()];
        for (i, info) in row.iter_mut().enumerate() {
            if info.suc == b {
                info.weight = weight;
                return EdgeIndex {
                    from: a,
                    successor_index: i,
                };
            }
        }
        let rank = row.len();
        row.push(WSuc { suc: b, weight });
        EdgeIndex {
            from: a,
            successor_index: rank,
        }
    }
}

impl<'a, E, Ix> fmt::Debug for EdgeReferences<'a, E, Ix>
where
    E: fmt::Debug,
    Ix: IndexType,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut edge_list = f.debug_list();
        let iter: Self = self.clone();
        for e in iter {
            if std::mem::size_of::<E>() != 0 {
                edge_list.entry(&(
                    NoPretty((e.source().index(), e.target().index())),
                    e.weight(),
                ));
            } else {
                edge_list.entry(&NoPretty((e.source().index(), e.target().index())));
            }
        }
        edge_list.finish()
    }
}

impl<E, Ix> fmt::Debug for List<E, Ix>
where
    E: fmt::Debug,
    Ix: IndexType,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut fmt_struct = f.debug_struct("adj::List");
        fmt_struct.field("node_count", &self.node_count());
        fmt_struct.field("edge_count", &self.edge_count());
        if self.edge_count() > 0 {
            fmt_struct.field("edges", &self.edge_references());
        }
        fmt_struct.finish()
    }
}

impl<E, Ix> visit::GraphBase for List<E, Ix>
where
    Ix: IndexType,
{
    type NodeId = NodeIndex<Ix>;
    type EdgeId = EdgeIndex<Ix>;
}

impl<E, Ix> visit::Visitable for List<E, Ix>
where
    Ix: IndexType,
{
    type Map = FixedBitSet;
    fn visit_map(&self) -> FixedBitSet {
        FixedBitSet::with_capacity(self.node_count())
    }
    fn reset_map(&self, map: &mut Self::Map) {
        map.clear();
        map.grow(self.node_count());
    }
}

impl<'a, E, Ix: IndexType> visit::IntoNodeIdentifiers for &'a List<E, Ix> {
    type NodeIdentifiers = NodeIndices<Ix>;
    fn node_identifiers(self) -> NodeIndices<Ix> {
        self.node_indices()
    }
}

impl<Ix: IndexType> visit::NodeRef for NodeIndex<Ix> {
    type NodeId = NodeIndex<Ix>;
    type Weight = ();
    fn id(&self) -> Self::NodeId {
        *self
    }
    fn weight(&self) -> &Self::Weight {
        &()
    }
}

impl<'a, Ix: IndexType, E> visit::IntoNodeReferences for &'a List<E, Ix> {
    type NodeRef = NodeIndex<Ix>;
    type NodeReferences = NodeIndices<Ix>;
    fn node_references(self) -> Self::NodeReferences {
        self.node_indices()
    }
}

impl<E, Ix: IndexType> visit::Data for List<E, Ix> {
    type NodeWeight = ();
    type EdgeWeight = E;
}

impl<'a, E, Ix: IndexType> IntoNeighbors for &'a List<E, Ix> {
    type Neighbors = Neighbors<'a, E, Ix>;
    /// Returns an iterator of all nodes with an edge starting from `a`.
    /// Panics if `a` is out of bounds.
    /// Use [`List::edge_indices_from`] instead if you do not want to borrow the adjacency list while
    /// iterating.
    fn neighbors(self, a: NodeIndex<Ix>) -> Self::Neighbors {
        let proj: fn(&WSuc<E, Ix>) -> NodeIndex<Ix> = |x| x.suc;
        let iter = self.suc[a.index()].iter().map(proj);
        Neighbors { iter }
    }
}

type SomeIter<'a, E, Ix> = std::iter::Map<
    std::iter::Zip<std::iter::Enumerate<RowIter<'a, E, Ix>>, std::iter::Repeat<Ix>>,
    fn(((usize, &'a WSuc<E, Ix>), Ix)) -> EdgeReference<'a, E, Ix>,
>;

iterator_wrap! {
impl (Iterator) for
/// An iterator over the [`EdgeReference`] of all the edges of the graph.
struct EdgeReferences<'a, E, Ix> where { Ix: IndexType }
item: EdgeReference<'a, E, Ix>,
iter: std::iter::FlatMap<
    std::iter::Enumerate<
        std::slice::Iter<'a, Row<E, Ix>>
    >,
    SomeIter<'a, E, Ix>,
    fn(
        (usize, &'a Vec<WSuc<E, Ix>>)
    ) -> SomeIter<'a, E, Ix>,
>,
}

impl<'a, E, Ix: IndexType> Clone for EdgeReferences<'a, E, Ix> {
    fn clone(&self) -> Self {
        EdgeReferences {
            iter: self.iter.clone(),
        }
    }
}

fn proj1<E, Ix: IndexType>(
    ((successor_index, edge), from): ((usize, &WSuc<E, Ix>), Ix),
) -> EdgeReference<E, Ix> {
    let id = EdgeIndex {
        from,
        successor_index,
    };
    EdgeReference { id, edge }
}
fn proj2<E, Ix: IndexType>((row_index, row): (usize, &Vec<WSuc<E, Ix>>)) -> SomeIter<E, Ix> {
    row.iter()
        .enumerate()
        .zip(std::iter::repeat(Ix::new(row_index)))
        .map(proj1 as _)
}

impl<'a, Ix: IndexType, E> visit::IntoEdgeReferences for &'a List<E, Ix> {
    type EdgeRef = EdgeReference<'a, E, Ix>;
    type EdgeReferences = EdgeReferences<'a, E, Ix>;
    fn edge_references(self) -> Self::EdgeReferences {
        let iter = self.suc.iter().enumerate().flat_map(proj2 as _);
        EdgeReferences { iter }
    }
}

iterator_wrap! {
impl (Iterator) for
/// Iterator over the [`EdgeReference`] of the outgoing edges from a node.
#[derive(Debug, Clone)]
struct OutgoingEdgeReferences<'a, E, Ix> where { Ix: IndexType }
item: EdgeReference<'a, E, Ix>,
iter: SomeIter<'a, E, Ix>,
}

impl<'a, Ix: IndexType, E> visit::IntoEdges for &'a List<E, Ix> {
    type Edges = OutgoingEdgeReferences<'a, E, Ix>;
    fn edges(self, a: Self::NodeId) -> Self::Edges {
        let iter = self.suc[a.index()]
            .iter()
            .enumerate()
            .zip(std::iter::repeat(a))
            .map(proj1 as _);
        OutgoingEdgeReferences { iter }
    }
}

impl<E, Ix: IndexType> visit::GraphProp for List<E, Ix> {
    type EdgeType = crate::Directed;
    fn is_directed(&self) -> bool {
        true
    }
}

impl<E, Ix: IndexType> NodeCount for List<E, Ix> {
    /// Returns the number of nodes in the list
    ///
    /// Computes in **O(1)** time.
    fn node_count(&self) -> usize {
        self.suc.len()
    }
}

impl<E, Ix: IndexType> EdgeCount for List<E, Ix> {
    /// Returns the number of edges in the list
    ///
    /// Computes in **O(|V|)** time.
    fn edge_count(&self) -> usize {
        List::edge_count(self)
    }
}

impl<E, Ix: IndexType> visit::NodeIndexable for List<E, Ix> {
    fn node_bound(&self) -> usize {
        self.node_count()
    }
    #[inline]
    fn to_index(&self, a: Self::NodeId) -> usize {
        a.index()
    }
    #[inline]
    fn from_index(&self, i: usize) -> Self::NodeId {
        Ix::new(i)
    }
}

impl<E, Ix: IndexType> visit::NodeCompactIndexable for List<E, Ix> {}

impl<E, Ix: IndexType> DataMap for List<E, Ix> {
    fn node_weight(&self, n: Self::NodeId) -> Option<&()> {
        if n.index() < self.suc.len() {
            Some(&())
        } else {
            None
        }
    }

    /// Accesses the weight of edge `e`
    ///
    /// Computes in **O(1)**
    fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E> {
        self.get_edge(e).map(|x| &x.weight)
    }
}

impl<E, Ix: IndexType> DataMapMut for List<E, Ix> {
    fn node_weight_mut(&mut self, n: Self::NodeId) -> Option<&mut ()> {
        if n.index() < self.suc.len() {
            // A hack to produce a &'static mut ()
            // It does not actually allocate according to godbolt
            let b = Box::new(());
            Some(Box::leak(b))
        } else {
            None
        }
    }
    /// Accesses the weight of edge `e`
    ///
    /// Computes in **O(1)**
    fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E> {
        self.get_edge_mut(e).map(|x| &mut x.weight)
    }
}

/// The adjacency matrix for **List** is a bitmap that's computed by
/// `.adjacency_matrix()`.
impl<E, Ix> GetAdjacencyMatrix for List<E, Ix>
where
    Ix: IndexType,
{
    type AdjMatrix = FixedBitSet;

    fn adjacency_matrix(&self) -> FixedBitSet {
        let n = self.node_count();
        let mut matrix = FixedBitSet::with_capacity(n * n);
        for edge in self.edge_references() {
            let i = edge.source().index() * n + edge.target().index();
            matrix.put(i);

            let j = edge.source().index() + n * edge.target().index();
            matrix.put(j);
        }
        matrix
    }

    fn is_adjacent(&self, matrix: &FixedBitSet, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
        let n = self.edge_count();
        let index = n * a.index() + b.index();
        matrix.contains(index)
    }
}