paralegal_spdg/
tiny_bitset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::utils::display_list;
use std::fmt::{Display, Formatter};

#[cfg(feature = "rustc")]
use rustc_macros::{Decodable, Encodable};

/// A bit-set implemented with a [`u16`], supporting domains up to 16 elements.
#[derive(
    Clone, Eq, PartialEq, PartialOrd, Ord, Hash, Copy, serde::Serialize, serde::Deserialize,
)]
#[cfg_attr(feature = "rustc", derive(Encodable, Decodable))]
pub struct TinyBitSet(u16);

impl Default for TinyBitSet {
    fn default() -> Self {
        Self::new_empty()
    }
}

impl std::fmt::Debug for TinyBitSet {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.into_iter_set_in_domain().collect::<Vec<_>>().fmt(f)
    }
}

impl TinyBitSet {
    #[inline]
    /// Creates a new, empty bitset.
    pub fn new_empty() -> Self {
        Self(0)
    }

    #[inline]
    /// Sets the `index`th bit.
    pub fn set(&mut self, index: u32) {
        self.0 |= 1_u16.checked_shl(index).unwrap_or(0);
    }

    #[inline]
    /// Unsets the `index`th bit.
    pub fn clear(&mut self, index: u32) {
        self.0 &= !1_u16.checked_shl(index).unwrap_or(0);
    }

    #[inline]
    /// Sets the `i`th to `j`th bits.
    pub fn set_range(&mut self, range: std::ops::Range<u32>) {
        use std::ops::Not;
        let bits = u16::MAX
            .checked_shl(range.end - range.start)
            .unwrap_or(0)
            .not()
            .checked_shl(range.start)
            .unwrap_or(0);
        self.0 |= bits;
    }

    #[inline]
    /// Is the set empty?
    pub fn is_empty(self) -> bool {
        self.0 == 0
    }

    #[inline]
    /// Returns the domain size of the bitset.
    pub fn within_domain(self, index: u32) -> bool {
        index < 16
    }

    /// How many bits are set to `true`?
    #[inline]
    pub fn count(self) -> u32 {
        self.0.count_ones()
    }

    #[inline]
    /// Returns if the `index`th bit is set.
    pub fn contains(self, index: u32) -> Option<bool> {
        self.within_domain(index)
            .then(|| ((self.0.checked_shr(index).unwrap_or(1)) & 1) == 1)
    }

    /// Similar to [`Self::contains`] but in the case of an `index` outside the
    /// domain it returns `false` instead of `None`.
    #[inline]
    pub fn is_set(self, index: u32) -> bool {
        self.contains(index) == Some(true)
    }

    /// Iterate over all set indices that are within the domain (less than 16).
    #[inline]
    pub fn into_iter_set_in_domain(self) -> impl Iterator<Item = u32> + Clone {
        (0..16).filter(move |i| self.contains(*i).unwrap_or(false))
    }

    /// Create a struct with a pretty [`Display`] implementation for this tiny
    /// bit set.
    pub fn display_pretty(self) -> DisplayTinyBitSet {
        DisplayTinyBitSet { set: self }
    }

    /// A new bit set that contains elements that are both in `self` and
    /// `other`. Same as using `&`
    pub fn intersection(self, other: Self) -> Self {
        self & other
    }
}

impl FromIterator<u32> for TinyBitSet {
    fn from_iter<T: IntoIterator<Item = u32>>(iter: T) -> Self {
        let mut slf = Self::new_empty();
        for item in iter {
            slf.set(item)
        }
        slf
    }
}

impl std::ops::BitOrAssign for TinyBitSet {
    fn bitor_assign(&mut self, rhs: Self) {
        self.0.bitor_assign(rhs.0)
    }
}

impl std::ops::BitAndAssign for TinyBitSet {
    fn bitand_assign(&mut self, rhs: Self) {
        self.0.bitand_assign(rhs.0)
    }
}

impl std::ops::BitAnd for TinyBitSet {
    type Output = Self;
    fn bitand(self, rhs: Self) -> Self::Output {
        TinyBitSet(self.0.bitand(rhs.0))
    }
}

impl std::ops::BitOr for TinyBitSet {
    type Output = Self;
    fn bitor(self, rhs: Self) -> Self::Output {
        TinyBitSet(self.0.bitor(rhs.0))
    }
}

impl std::ops::BitXor for TinyBitSet {
    type Output = Self;
    fn bitxor(self, rhs: Self) -> Self::Output {
        Self(self.0.bitxor(rhs.0))
    }
}

impl std::ops::BitXorAssign for TinyBitSet {
    fn bitxor_assign(&mut self, rhs: Self) {
        self.0.bitxor_assign(rhs.0)
    }
}

pub struct DisplayTinyBitSet {
    set: TinyBitSet,
}

impl Display for DisplayTinyBitSet {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        display_list(self.set.into_iter_set_in_domain()).fmt(f)
    }
}

/// Serialization that is readable. Serializes the set as a list of integers
/// (that are set to one).
pub mod pretty {
    use super::TinyBitSet;

    /// See [module level documentation][self]
    pub fn deserialize<'de, D>(deserializer: D) -> Result<TinyBitSet, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        <Vec<u32> as serde::Deserialize<'de>>::deserialize(deserializer)
            .map(|v| v.into_iter().collect())
    }

    /// See [module level documentation][self]
    pub fn serialize<S>(set: &TinyBitSet, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serde::Serialize::serialize(
            &set.into_iter_set_in_domain().collect::<Vec<_>>(),
            serializer,
        )
    }
}

#[test]
fn test_tiny_bitset() {
    let mut s = TinyBitSet::new_empty();
    s.set(5);
    assert_eq!(s.contains(5), Some(true));
    assert_eq!(s.contains(0), Some(false));
    assert_eq!(s.contains(16), None);

    let before = s.0;
    s.set(16);
    let after = s.0;
    assert_eq!(before, after);
}