1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use alloc::vec::Vec;
use std::fmt;
use std::iter::once;
use std::iter::FusedIterator;

use super::lazy_buffer::LazyBuffer;
use crate::size_hint::{self, SizeHint};

/// An iterator adaptor that iterates through all the `k`-permutations of the
/// elements from an iterator.
///
/// See [`.permutations()`](crate::Itertools::permutations) for
/// more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Permutations<I: Iterator> {
    vals: LazyBuffer<I>,
    state: PermutationState,
}

impl<I> Clone for Permutations<I>
where
    I: Clone + Iterator,
    I::Item: Clone,
{
    clone_fields!(vals, state);
}

#[derive(Clone, Debug)]
enum PermutationState {
    /// No permutation generated yet.
    Start { k: usize },
    /// Values from the iterator are not fully loaded yet so `n` is still unknown.
    Buffered { k: usize, min_n: usize },
    /// All values from the iterator are known so `n` is known.
    Loaded {
        indices: Vec<usize>,
        cycles: Vec<usize>,
    },
    /// No permutation left to generate.
    End,
}

impl<I> fmt::Debug for Permutations<I>
where
    I: Iterator + fmt::Debug,
    I::Item: fmt::Debug,
{
    debug_fmt_fields!(Permutations, vals, state);
}

pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> {
    Permutations {
        vals: LazyBuffer::new(iter),
        state: PermutationState::Start { k },
    }
}

impl<I> Iterator for Permutations<I>
where
    I: Iterator,
    I::Item: Clone,
{
    type Item = Vec<I::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        let Self { vals, state } = self;
        match state {
            PermutationState::Start { k: 0 } => {
                *state = PermutationState::End;
                Some(Vec::new())
            }
            &mut PermutationState::Start { k } => {
                vals.prefill(k);
                if vals.len() != k {
                    *state = PermutationState::End;
                    return None;
                }
                *state = PermutationState::Buffered { k, min_n: k };
                Some(vals[0..k].to_vec())
            }
            PermutationState::Buffered { ref k, min_n } => {
                if vals.get_next() {
                    let item = (0..*k - 1)
                        .chain(once(*min_n))
                        .map(|i| vals[i].clone())
                        .collect();
                    *min_n += 1;
                    Some(item)
                } else {
                    let n = *min_n;
                    let prev_iteration_count = n - *k + 1;
                    let mut indices: Vec<_> = (0..n).collect();
                    let mut cycles: Vec<_> = (n - k..n).rev().collect();
                    // Advance the state to the correct point.
                    for _ in 0..prev_iteration_count {
                        if advance(&mut indices, &mut cycles) {
                            *state = PermutationState::End;
                            return None;
                        }
                    }
                    let item = indices[0..*k].iter().map(|&i| vals[i].clone()).collect();
                    *state = PermutationState::Loaded { indices, cycles };
                    Some(item)
                }
            }
            PermutationState::Loaded { indices, cycles } => {
                if advance(indices, cycles) {
                    *state = PermutationState::End;
                    return None;
                }
                let k = cycles.len();
                Some(indices[0..k].iter().map(|&i| vals[i].clone()).collect())
            }
            PermutationState::End => None,
        }
    }

    fn count(self) -> usize {
        let Self { vals, state } = self;
        let n = vals.count();
        state.size_hint_for(n).1.unwrap()
    }

    fn size_hint(&self) -> SizeHint {
        let (mut low, mut upp) = self.vals.size_hint();
        low = self.state.size_hint_for(low).0;
        upp = upp.and_then(|n| self.state.size_hint_for(n).1);
        (low, upp)
    }
}

impl<I> FusedIterator for Permutations<I>
where
    I: Iterator,
    I::Item: Clone,
{
}

fn advance(indices: &mut [usize], cycles: &mut [usize]) -> bool {
    let n = indices.len();
    let k = cycles.len();
    // NOTE: if `cycles` are only zeros, then we reached the last permutation.
    for i in (0..k).rev() {
        if cycles[i] == 0 {
            cycles[i] = n - i - 1;
            indices[i..].rotate_left(1);
        } else {
            let swap_index = n - cycles[i];
            indices.swap(i, swap_index);
            cycles[i] -= 1;
            return false;
        }
    }
    true
}

impl PermutationState {
    fn size_hint_for(&self, n: usize) -> SizeHint {
        // At the beginning, there are `n!/(n-k)!` items to come.
        let at_start = |n, k| {
            debug_assert!(n >= k);
            let total = (n - k + 1..=n).try_fold(1usize, |acc, i| acc.checked_mul(i));
            (total.unwrap_or(usize::MAX), total)
        };
        match *self {
            Self::Start { k } if n < k => (0, Some(0)),
            Self::Start { k } => at_start(n, k),
            Self::Buffered { k, min_n } => {
                // Same as `Start` minus the previously generated items.
                size_hint::sub_scalar(at_start(n, k), min_n - k + 1)
            }
            Self::Loaded {
                ref indices,
                ref cycles,
            } => {
                let count = cycles.iter().enumerate().try_fold(0usize, |acc, (i, &c)| {
                    acc.checked_mul(indices.len() - i)
                        .and_then(|count| count.checked_add(c))
                });
                (count.unwrap_or(usize::MAX), count)
            }
            Self::End => (0, Some(0)),
        }
    }
}