1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/// `MinMaxResult` is an enum returned by `minmax`.
///
/// See [`.minmax()`](crate::Itertools::minmax) for more detail.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MinMaxResult<T> {
/// Empty iterator
NoElements,
/// Iterator with one element, so the minimum and maximum are the same
OneElement(T),
/// More than one element in the iterator, the first element is not larger
/// than the second
MinMax(T, T),
}
impl<T: Clone> MinMaxResult<T> {
/// `into_option` creates an `Option` of type `(T, T)`. The returned `Option`
/// has variant `None` if and only if the `MinMaxResult` has variant
/// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`.
/// If the `MinMaxResult` has variant `OneElement(x)`, performing this
/// operation will make one clone of `x`.
///
/// # Examples
///
/// ```
/// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax};
///
/// let r: MinMaxResult<i32> = NoElements;
/// assert_eq!(r.into_option(), None);
///
/// let r = OneElement(1);
/// assert_eq!(r.into_option(), Some((1, 1)));
///
/// let r = MinMax(1, 2);
/// assert_eq!(r.into_option(), Some((1, 2)));
/// ```
pub fn into_option(self) -> Option<(T, T)> {
match self {
MinMaxResult::NoElements => None,
MinMaxResult::OneElement(x) => Some((x.clone(), x)),
MinMaxResult::MinMax(x, y) => Some((x, y)),
}
}
}
/// Implementation guts for `minmax` and `minmax_by_key`.
pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F, mut lt: L) -> MinMaxResult<I::Item>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
L: FnMut(&I::Item, &I::Item, &K, &K) -> bool,
{
let (mut min, mut max, mut min_key, mut max_key) = match it.next() {
None => return MinMaxResult::NoElements,
Some(x) => match it.next() {
None => return MinMaxResult::OneElement(x),
Some(y) => {
let xk = key_for(&x);
let yk = key_for(&y);
if !lt(&y, &x, &yk, &xk) {
(x, y, xk, yk)
} else {
(y, x, yk, xk)
}
}
},
};
loop {
// `first` and `second` are the two next elements we want to look
// at. We first compare `first` and `second` (#1). The smaller one
// is then compared to current minimum (#2). The larger one is
// compared to current maximum (#3). This way we do 3 comparisons
// for 2 elements.
let first = match it.next() {
None => break,
Some(x) => x,
};
let second = match it.next() {
None => {
let first_key = key_for(&first);
if lt(&first, &min, &first_key, &min_key) {
min = first;
} else if !lt(&first, &max, &first_key, &max_key) {
max = first;
}
break;
}
Some(x) => x,
};
let first_key = key_for(&first);
let second_key = key_for(&second);
if !lt(&second, &first, &second_key, &first_key) {
if lt(&first, &min, &first_key, &min_key) {
min = first;
min_key = first_key;
}
if !lt(&second, &max, &second_key, &max_key) {
max = second;
max_key = second_key;
}
} else {
if lt(&second, &min, &second_key, &min_key) {
min = second;
min_key = second_key;
}
if !lt(&first, &max, &first_key, &max_key) {
max = first;
max_key = first_key;
}
}
}
MinMaxResult::MinMax(min, max)
}