1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#![cfg(feature = "use_alloc")]
use crate::size_hint;
use crate::Itertools;
use alloc::vec::Vec;
#[derive(Clone)]
/// An iterator adaptor that iterates over the cartesian product of
/// multiple iterators of type `I`.
///
/// An iterator element type is `Vec<I>`.
///
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiProduct<I>(Vec<MultiProductIter<I>>)
where
I: Iterator + Clone,
I::Item: Clone;
impl<I> std::fmt::Debug for MultiProduct<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(CoalesceBy, 0);
}
/// Create a new cartesian product iterator over an arbitrary number
/// of iterators of the same type.
///
/// Iterator element is of type `Vec<H::Item::Item>`.
pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter>
where
H: Iterator,
H::Item: IntoIterator,
<H::Item as IntoIterator>::IntoIter: Clone,
<H::Item as IntoIterator>::Item: Clone,
{
MultiProduct(
iters
.map(|i| MultiProductIter::new(i.into_iter()))
.collect(),
)
}
#[derive(Clone, Debug)]
/// Holds the state of a single iterator within a `MultiProduct`.
struct MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
cur: Option<I::Item>,
iter: I,
iter_orig: I,
}
/// Holds the current state during an iteration of a `MultiProduct`.
#[derive(Debug)]
enum MultiProductIterState {
StartOfIter,
MidIter { on_first_iter: bool },
}
impl<I> MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
/// Iterates the rightmost iterator, then recursively iterates iterators
/// to the left if necessary.
///
/// Returns true if the iteration succeeded, else false.
fn iterate_last(
multi_iters: &mut [MultiProductIter<I>],
mut state: MultiProductIterState,
) -> bool {
use self::MultiProductIterState::*;
if let Some((last, rest)) = multi_iters.split_last_mut() {
let on_first_iter = match state {
StartOfIter => {
let on_first_iter = !last.in_progress();
state = MidIter { on_first_iter };
on_first_iter
}
MidIter { on_first_iter } => on_first_iter,
};
if !on_first_iter {
last.iterate();
}
if last.in_progress() {
true
} else if MultiProduct::iterate_last(rest, state) {
last.reset();
last.iterate();
// If iterator is None twice consecutively, then iterator is
// empty; whole product is empty.
last.in_progress()
} else {
false
}
} else {
// Reached end of iterator list. On initialisation, return true.
// At end of iteration (final iterator finishes), finish.
match state {
StartOfIter => false,
MidIter { on_first_iter } => on_first_iter,
}
}
}
/// Returns the unwrapped value of the next iteration.
fn curr_iterator(&self) -> Vec<I::Item> {
self.0
.iter()
.map(|multi_iter| multi_iter.cur.clone().unwrap())
.collect()
}
/// Returns true if iteration has started and has not yet finished; false
/// otherwise.
fn in_progress(&self) -> bool {
if let Some(last) = self.0.last() {
last.in_progress()
} else {
false
}
}
}
impl<I> MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
fn new(iter: I) -> Self {
MultiProductIter {
cur: None,
iter: iter.clone(),
iter_orig: iter,
}
}
/// Iterate the managed iterator.
fn iterate(&mut self) {
self.cur = self.iter.next();
}
/// Reset the managed iterator.
fn reset(&mut self) {
self.iter = self.iter_orig.clone();
}
/// Returns true if the current iterator has been started and has not yet
/// finished; false otherwise.
fn in_progress(&self) -> bool {
self.cur.is_some()
}
}
impl<I> Iterator for MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if MultiProduct::iterate_last(&mut self.0, MultiProductIterState::StartOfIter) {
Some(self.curr_iterator())
} else {
None
}
}
fn count(self) -> usize {
if self.0.is_empty() {
return 0;
}
if !self.in_progress() {
return self
.0
.into_iter()
.fold(1, |acc, multi_iter| acc * multi_iter.iter.count());
}
self.0.into_iter().fold(
0,
|acc,
MultiProductIter {
iter,
iter_orig,
cur: _,
}| {
let total_count = iter_orig.count();
let cur_count = iter.count();
acc * total_count + cur_count
},
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
// Not ExactSizeIterator because size may be larger than usize
if self.0.is_empty() {
return (0, Some(0));
}
if !self.in_progress() {
return self.0.iter().fold((1, Some(1)), |acc, multi_iter| {
size_hint::mul(acc, multi_iter.iter.size_hint())
});
}
self.0.iter().fold(
(0, Some(0)),
|acc,
&MultiProductIter {
ref iter,
ref iter_orig,
cur: _,
}| {
let cur_size = iter.size_hint();
let total_size = iter_orig.size_hint();
size_hint::add(size_hint::mul(acc, total_size), cur_size)
},
)
}
fn last(self) -> Option<Self::Item> {
let iter_count = self.0.len();
let lasts: Self::Item = self
.0
.into_iter()
.map(|multi_iter| multi_iter.iter.last())
.while_some()
.collect();
if lasts.len() == iter_count {
Some(lasts)
} else {
None
}
}
}