foldhash/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
//! This crate provides foldhash, a fast, non-cryptographic, minimally
//! DoS-resistant hashing algorithm designed for computational uses such as
//! hashmaps, bloom filters, count sketching, etc.
//!
//! When should you **not** use foldhash:
//!
//! - You are afraid of people studying your long-running program's behavior
//! to reverse engineer its internal random state and using this knowledge to
//! create many colliding inputs for computational complexity attacks.
//!
//! - You expect foldhash to have a consistent output across versions or
//! platforms, such as for persistent file formats or communication protocols.
//!
//! - You are relying on foldhash's properties for any kind of security.
//! Foldhash is **not appropriate for any cryptographic purpose**.
//!
//! Foldhash has two variants, one optimized for speed which is ideal for data
//! structures such as hash maps and bloom filters, and one optimized for
//! statistical quality which is ideal for algorithms such as
//! [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog) and
//! [MinHash](https://en.wikipedia.org/wiki/MinHash).
//!
//! Foldhash can be used in a `#![no_std]` environment by disabling its default
//! `"std"` feature.
//!
//! # Usage
//!
//! The easiest way to use this crate with the standard library [`HashMap`] or
//! [`HashSet`] is to import them from `foldhash` instead, along with the
//! extension traits to make [`HashMap::new`] and [`HashMap::with_capacity`]
//! work out-of-the-box:
//!
//! ```rust
//! use foldhash::{HashMap, HashMapExt};
//!
//! let mut hm = HashMap::new();
//! hm.insert(42, "hello");
//! ```
//!
//! You can also avoid the convenience types and do it manually by initializing
//! a [`RandomState`](fast::RandomState), for example if you are using a different hash map
//! implementation like [`hashbrown`](https://docs.rs/hashbrown/):
//!
//! ```rust
//! use hashbrown::HashMap;
//! use foldhash::fast::RandomState;
//!
//! let mut hm = HashMap::with_hasher(RandomState::default());
//! hm.insert("foo", "bar");
//! ```
//!
//! The above methods are the recommended way to use foldhash, which will
//! automatically generate a randomly generated hasher instance for you. If you
//! absolutely must have determinism you can use [`FixedState`](fast::FixedState)
//! instead, but note that this makes you trivially vulnerable to HashDoS
//! attacks and might lead to quadratic runtime when moving data from one
//! hashmap/set into another:
//!
//! ```rust
//! use std::collections::HashSet;
//! use foldhash::fast::FixedState;
//!
//! let mut hm = HashSet::with_hasher(FixedState::with_seed(42));
//! hm.insert([1, 10, 100]);
//! ```
//!
//! If you rely on statistical properties of the hash for the correctness of
//! your algorithm, such as in [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog),
//! it is suggested to use the [`RandomState`](quality::RandomState)
//! or [`FixedState`](quality::FixedState) from the [`quality`] module instead
//! of the [`fast`] module. The latter is optimized purely for speed in hash
//! tables and has known statistical imperfections.
//!
//! Finally, you can also directly use the [`RandomState`](quality::RandomState)
//! or [`FixedState`](quality::FixedState) to manually hash items using the
//! [`BuildHasher`](std::hash::BuildHasher) trait:
//! ```rust
//! use std::hash::BuildHasher;
//! use foldhash::quality::RandomState;
//!
//! let random_state = RandomState::default();
//! let hash = random_state.hash_one("hello world");
//! ```
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![warn(missing_docs)]
use core::hash::Hasher;
#[cfg(feature = "std")]
mod convenience;
mod seed;
#[cfg(feature = "std")]
pub use convenience::*;
// Arbitrary constants with high entropy. Hexadecimal digits of pi were used.
const ARBITRARY0: u64 = 0x243f6a8885a308d3;
const ARBITRARY1: u64 = 0x13198a2e03707344;
const ARBITRARY2: u64 = 0xa4093822299f31d0;
const ARBITRARY3: u64 = 0x082efa98ec4e6c89;
const ARBITRARY4: u64 = 0x452821e638d01377;
const ARBITRARY5: u64 = 0xbe5466cf34e90c6c;
const ARBITRARY6: u64 = 0xc0ac29b7c97c50dd;
const ARBITRARY7: u64 = 0x3f84d5b5b5470917;
const ARBITRARY8: u64 = 0x9216d5d98979fb1b;
const ARBITRARY9: u64 = 0xd1310ba698dfb5ac;
#[inline(always)]
const fn folded_multiply(x: u64, y: u64) -> u64 {
#[cfg(target_pointer_width = "64")]
{
// We compute the full u64 x u64 -> u128 product, this is a single mul
// instruction on x86-64, one mul plus one mulhi on ARM64.
let full = (x as u128) * (y as u128);
let lo = full as u64;
let hi = (full >> 64) as u64;
// The middle bits of the full product fluctuate the most with small
// changes in the input. This is the top bits of lo and the bottom bits
// of hi. We can thus make the entire output fluctuate with small
// changes to the input by XOR'ing these two halves.
lo ^ hi
}
#[cfg(target_pointer_width = "32")]
{
// u64 x u64 -> u128 product is prohibitively expensive on 32-bit.
// Decompose into 32-bit parts.
let lx = x as u32;
let ly = y as u32;
let hx = (x >> 32) as u32;
let hy = (y >> 32) as u32;
// u32 x u32 -> u64 the low bits of one with the high bits of the other.
let afull = (lx as u64) * (hy as u64);
let bfull = (hx as u64) * (ly as u64);
// Combine, swapping low/high of one of them so the upper bits of the
// product of one combine with the lower bits of the other.
afull ^ bfull.rotate_right(32)
}
}
/// The foldhash implementation optimized for speed.
pub mod fast {
use super::*;
pub use seed::fast::{FixedState, RandomState};
/// A [`Hasher`] instance implementing foldhash, optimized for speed.
///
/// It can't be created directly, see [`RandomState`] or [`FixedState`].
#[derive(Clone)]
pub struct FoldHasher {
accumulator: u64,
sponge: u128,
sponge_len: u8,
fold_seed: u64,
expand_seed: u64,
expand_seed2: u64,
expand_seed3: u64,
}
impl FoldHasher {
#[inline]
pub(crate) fn with_seed(per_hasher_seed: u64, global_seed: &[u64; 4]) -> FoldHasher {
FoldHasher {
accumulator: per_hasher_seed,
sponge: 0,
sponge_len: 0,
fold_seed: global_seed[0],
expand_seed: global_seed[1],
expand_seed2: global_seed[2],
expand_seed3: global_seed[3],
}
}
#[inline(always)]
fn write_num<T: Into<u128>>(&mut self, x: T) {
let bits: usize = 8 * core::mem::size_of::<T>();
if self.sponge_len as usize + bits > 128 {
let lo = self.sponge as u64;
let hi = (self.sponge >> 64) as u64;
self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
self.sponge = x.into();
self.sponge_len = bits as u8;
} else {
self.sponge |= x.into() << self.sponge_len;
self.sponge_len += bits as u8;
}
}
}
impl Hasher for FoldHasher {
#[inline(always)]
fn write(&mut self, bytes: &[u8]) {
let mut s0 = self.accumulator;
let mut s1 = self.expand_seed;
let len = bytes.len();
if len <= 16 {
// XOR the input into s0, s1, then multiply and fold.
if len >= 8 {
s0 ^= u64::from_ne_bytes(bytes[0..8].try_into().unwrap());
s1 ^= u64::from_ne_bytes(bytes[len - 8..].try_into().unwrap());
} else if len >= 4 {
s0 ^= u32::from_ne_bytes(bytes[0..4].try_into().unwrap()) as u64;
s1 ^= u32::from_ne_bytes(bytes[len - 4..].try_into().unwrap()) as u64;
} else if len > 0 {
let lo = bytes[0];
let mid = bytes[len / 2];
let hi = bytes[len - 1];
s0 ^= lo as u64;
s1 ^= ((hi as u64) << 8) | mid as u64;
}
self.accumulator = folded_multiply(s0, s1);
} else if len < 256 {
self.accumulator = hash_bytes_medium(bytes, s0, s1, self.fold_seed);
} else {
self.accumulator = hash_bytes_long(
bytes,
s0,
s1,
self.expand_seed2,
self.expand_seed3,
self.fold_seed,
);
}
}
#[inline(always)]
fn write_u8(&mut self, i: u8) {
self.write_num(i);
}
#[inline(always)]
fn write_u16(&mut self, i: u16) {
self.write_num(i);
}
#[inline(always)]
fn write_u32(&mut self, i: u32) {
self.write_num(i);
}
#[inline(always)]
fn write_u64(&mut self, i: u64) {
self.write_num(i);
}
#[inline(always)]
fn write_u128(&mut self, i: u128) {
let lo = i as u64;
let hi = (i >> 64) as u64;
self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
}
#[inline(always)]
fn write_usize(&mut self, i: usize) {
// u128 doesn't implement From<usize>.
#[cfg(target_pointer_width = "32")]
self.write_num(i as u32);
#[cfg(target_pointer_width = "64")]
self.write_num(i as u64);
}
#[inline(always)]
fn finish(&self) -> u64 {
if self.sponge_len > 0 {
let lo = self.sponge as u64;
let hi = (self.sponge >> 64) as u64;
folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed)
} else {
self.accumulator
}
}
}
}
/// The foldhash implementation optimized for quality.
pub mod quality {
use super::*;
pub use seed::quality::{FixedState, RandomState};
/// A [`Hasher`] instance implementing foldhash, optimized for quality.
///
/// It can't be created directly, see [`RandomState`] or [`FixedState`].
#[derive(Clone)]
pub struct FoldHasher {
pub(crate) inner: fast::FoldHasher,
}
impl Hasher for FoldHasher {
#[inline(always)]
fn write(&mut self, bytes: &[u8]) {
self.inner.write(bytes);
}
#[inline(always)]
fn write_u8(&mut self, i: u8) {
self.inner.write_u8(i);
}
#[inline(always)]
fn write_u16(&mut self, i: u16) {
self.inner.write_u16(i);
}
#[inline(always)]
fn write_u32(&mut self, i: u32) {
self.inner.write_u32(i);
}
#[inline(always)]
fn write_u64(&mut self, i: u64) {
self.inner.write_u64(i);
}
#[inline(always)]
fn write_u128(&mut self, i: u128) {
self.inner.write_u128(i);
}
#[inline(always)]
fn write_usize(&mut self, i: usize) {
self.inner.write_usize(i);
}
#[inline(always)]
fn finish(&self) -> u64 {
folded_multiply(self.inner.finish(), ARBITRARY0)
}
}
}
/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
fn hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64 {
// Process 32 bytes per iteration, 16 bytes from the start, 16 bytes from
// the end. On the last iteration these two chunks can overlap, but that is
// perfectly fine.
let left_to_right = bytes.chunks_exact(16);
let mut right_to_left = bytes.rchunks_exact(16);
for lo in left_to_right {
let hi = right_to_left.next().unwrap();
let unconsumed_start = lo.as_ptr();
let unconsumed_end = hi.as_ptr_range().end;
if unconsumed_start >= unconsumed_end {
break;
}
let a = u64::from_ne_bytes(lo[0..8].try_into().unwrap());
let b = u64::from_ne_bytes(lo[8..16].try_into().unwrap());
let c = u64::from_ne_bytes(hi[0..8].try_into().unwrap());
let d = u64::from_ne_bytes(hi[8..16].try_into().unwrap());
s0 = folded_multiply(a ^ s0, c ^ fold_seed);
s1 = folded_multiply(b ^ s1, d ^ fold_seed);
}
s0 ^ s1
}
/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
#[cold]
#[inline(never)]
fn hash_bytes_long(
bytes: &[u8],
mut s0: u64,
mut s1: u64,
mut s2: u64,
mut s3: u64,
fold_seed: u64,
) -> u64 {
let chunks = bytes.chunks_exact(64);
let remainder = chunks.remainder().len();
for chunk in chunks {
let a = u64::from_ne_bytes(chunk[0..8].try_into().unwrap());
let b = u64::from_ne_bytes(chunk[8..16].try_into().unwrap());
let c = u64::from_ne_bytes(chunk[16..24].try_into().unwrap());
let d = u64::from_ne_bytes(chunk[24..32].try_into().unwrap());
let e = u64::from_ne_bytes(chunk[32..40].try_into().unwrap());
let f = u64::from_ne_bytes(chunk[40..48].try_into().unwrap());
let g = u64::from_ne_bytes(chunk[48..56].try_into().unwrap());
let h = u64::from_ne_bytes(chunk[56..64].try_into().unwrap());
s0 = folded_multiply(a ^ s0, e ^ fold_seed);
s1 = folded_multiply(b ^ s1, f ^ fold_seed);
s2 = folded_multiply(c ^ s2, g ^ fold_seed);
s3 = folded_multiply(d ^ s3, h ^ fold_seed);
}
s0 ^= s2;
s1 ^= s3;
if remainder > 0 {
hash_bytes_medium(&bytes[bytes.len() - remainder.max(16)..], s0, s1, fold_seed)
} else {
s0 ^ s1
}
}