fluid_let/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
// Copyright (c) 2019, ilammy
// Licensed under MIT license (see LICENSE)

//! Dynamically scoped variables.
//!
//! _Dynamic_ or _fluid_ variables are a handy way to define global configuration values.
//! They come from the Lisp family of languages where they are relatively popular in this role.
//!
//! # Declaring dynamic variables
//!
//! [`fluid_let!`] macro is used to declare dynamic variables. Dynamic variables
//! are _global_, therefore they must be declared as `static`:
//!
//! [`fluid_let!`]: macro.fluid_let.html
//!
//! ```
//! use std::fs::File;
//!
//! use fluid_let::fluid_let;
//!
//! fluid_let!(static LOG_FILE: File);
//! ```
//!
//! The actual type of `LOG_FILE` variable is `Option<&File>`: that is,
//! possibly absent reference to a file. All dynamic variables have `None` as
//! their default value, unless a particular value is set for them.
//!
//! If you enable the [`"static-init"` feature](#features), it is also
//! possible to provide `'static` initialization for types that allow it:
//!
//! ```no_run
//! # use fluid_let::fluid_let;
//! #
//! # enum LogLevel { Info }
//! #
//! # #[cfg(feature = "static-init")]
//! fluid_let!(static LOG_LEVEL: LogLevel = LogLevel::Info);
//! ```
//!
//! Here `LOG_LEVEL` has `Some(&LogLevel::Info)` as its default value.
//!
//! # Setting dynamic variables
//!
//! [`set`] is used to give value to a dynamic variable:
//!
//! [`set`]: struct.DynamicVariable.html#method.set
//!
//! ```no_run
//! # use std::fs::File;
//! #
//! # use fluid_let::fluid_let;
//! #
//! # fluid_let!(static LOG_FILE: File);
//! #
//! # fn open(path: &str) -> File { unimplemented!() }
//! #
//! let log_file: File = open("/tmp/log.txt");
//!
//! LOG_FILE.set(&log_file, || {
//!     //
//!     // logs will be redirected to /tmp/log.txt in this block
//!     //
//! });
//! ```
//!
//! Note that you store an _immutable reference_ in the dynamic variable.
//! You can’t directly modify the dynamic variable value after setting it,
//! but you can use something like `Cell` or `RefCell` to circumvent that.
//!
//! The new value is in effect within the _dynamic extent_ of the assignment,
//! that is within the closure passed to `set`. Once the closure returns, the
//! previous value of the variable is restored.
//!
//! If you do not need precise control over the extent of the assignment, you
//! can use the [`fluid_set!`] macro to assign until the end of the scope:
//!
//! [`fluid_set!`]: macro.fluid_set.html
//!
//! ```no_run
//! # use std::fs::File;
//! #
//! # use fluid_let::fluid_let;
//! #
//! # fluid_let!(static LOG_FILE: File);
//! #
//! # fn open(path: &str) -> File { unimplemented!() }
//! #
//! use fluid_let::fluid_set;
//!
//! fn chatterbox_function() {
//!     fluid_set!(LOG_FILE, open("/dev/null"));
//!     //
//!     // logs will be written to /dev/null in this function
//!     //
//! }
//! ```
//!
//! Obviously, you can also nest assignments arbitrarily:
//!
//! ```no_run
//! # use std::fs::File;
//! #
//! # use fluid_let::{fluid_let, fluid_set};
//! #
//! # fluid_let!(static LOG_FILE: File);
//! #
//! # fn open(path: &str) -> File { unimplemented!() }
//! #
//! LOG_FILE.set(open("A.txt"), || {
//!     // log to A.txt here
//!     LOG_FILE.set(open("/dev/null"), || {
//!         // log to /dev/null for a bit
//!         fluid_set!(LOG_FILE, open("B.txt"));
//!         // log to B.txt starting with this line
//!         {
//!             fluid_set!(LOG_FILE, open("C.txt"));
//!             // but in this block log to C.txt
//!         }
//!         // before going back to using B.txt here
//!     });
//!     // and logging to A.txt again
//! });
//! ```
//!
//! # Accessing dynamic variables
//!
//! [`get`] is used to retrieve the current value of a dynamic variable:
//!
//! [`get`]: struct.DynamicVariable.html#method.get
//!
//! ```no_run
//! # use std::io::{self, Write};
//! # use std::fs::File;
//! #
//! # use fluid_let::fluid_let;
//! #
//! # fluid_let!(static LOG_FILE: File);
//! #
//! fn write_log(msg: &str) -> io::Result<()> {
//!     LOG_FILE.get(|current| {
//!         if let Some(mut log_file) = current {
//!             write!(log_file, "{}\n", msg)?;
//!         }
//!         Ok(())
//!     })
//! }
//! ```
//!
//! Current value of the dynamic variable is passed to the provided closure, and
//! the value returned by the closure becomes the value of the `get()` call.
//!
//! This somewhat weird access interface is dictated by safety requirements. The
//! dynamic variable itself is global and thus has `'static` lifetime. However,
//! its values usually have shorter lifetimes, as short as the corresponing
//! `set()` call. Therefore, access reference must have _even shorter_ lifetime.
//!
//! If the variable type implements `Clone` or `Copy` then you can use [`cloned`]
//! and [`copied`] convenience accessors to get a copy of the current value:
//!
//! [`cloned`]: struct.DynamicVariable.html#method.cloned
//! [`copied`]: struct.DynamicVariable.html#method.copied
//!
//! ```no_run
//! # use std::io::{self, Write};
//! # use std::fs::File;
//! #
//! # use fluid_let::fluid_let;
//! #
//! # fluid_let!(static LOG_FILE: File);
//! #
//! #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
//! enum LogLevel {
//!     Debug,
//!     Info,
//!     Error,
//! }
//!
//! # #[cfg(not(feature = "fluid-let"))]
//! # fluid_let!(static LOG_LEVEL: LogLevel);
//! # #[cfg(feature = "fluid-let")]
//! fluid_let!(static LOG_LEVEL: LogLevel = LogLevel::Info);
//!
//! fn write_log(level: LogLevel, msg: &str) -> io::Result<()> {
//!     if level < LOG_LEVEL.copied().unwrap() {
//!         return Ok(());
//!     }
//!     LOG_FILE.get(|current| {
//!         if let Some(mut log_file) = current {
//!             write!(log_file, "{}\n", msg)?;
//!         }
//!         Ok(())
//!     })
//! }
//! ```
//!
//! # Thread safety
//!
//! Dynamic variables are global and _thread-local_. That is, each thread gets
//! its own independent instance of a dynamic variable. Values set in one thread
//! are visible only in this thread. Other threads will not see any changes in
//! values of their dynamic variables and may have different configurations.
//!
//! Note, however, that this does not free you from the usual synchronization
//! concerns when shared objects are involved. Dynamic variables hold _references_
//! to objects. Therefore it is entirely possible to bind _the same_ object with
//! internal mutability to a dynamic variable and access it from multiple threads.
//! In this case you will probably need some synchronization to use the shared
//! object in a safe manner, just like you would do when using `Arc` and friends.
//!
//! # Features
//!
//! Currently, there is only one optional feature: `"static-init"`,
//! gating static initialization of dynamic variables:
//!
//! ```
//! # use fluid_let::fluid_let;
//! #
//! # enum LogLevel { Info }
//! #
//! # #[cfg(feature = "static-init")]
//! fluid_let!(static LOG_LEVEL: LogLevel = LogLevel::Info);
//! //                                    ~~~~~~~~~~~~~~~~
//! ```
//!
//! The API for accessing known-initialized variables has not stabilized yet
//! and may be subject to changes.

use std::borrow::Borrow;
use std::cell::UnsafeCell;
use std::mem;
use std::thread::LocalKey;

#[cfg(feature = "static-init")]
/// Declares global dynamic variables.
///
/// # Examples
///
/// One-line form for single declarations:
///
/// ```
/// # use fluid_let::fluid_let;
/// fluid_let!(static ENABLED: bool);
/// ```
///
/// If [`"static-init"` feature](index.html#features) is enabled,
/// you can provide initial value:
///
/// ```
/// # use fluid_let::fluid_let;
/// fluid_let!(static ENABLED: bool = true);
/// ```
///
/// Multiple declarations with attributes and visibility modifiers are also supported:
///
/// ```
/// # use fluid_let::fluid_let;
/// fluid_let! {
///     /// Length of `Debug` representation of hashes in characters.
///     pub static HASH_LENGTH: usize = 32;
///
///     /// If set to true then passwords will be printed to logs.
///     #[cfg(test)]
///     static DUMP_PASSWORDS: bool;
/// }
/// ```
///
/// See also [crate-level documentation](index.html) for usage examples.
#[macro_export]
macro_rules! fluid_let {
    // Simple case: a single definition with None value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty
    } => {
        $(#[$attr])*
        $pub static $name: $crate::DynamicVariable<$type> = {
            thread_local! {
                static VARIABLE: $crate::DynamicCell<$type> = $crate::DynamicCell::empty();
            }
            $crate::DynamicVariable::new(&VARIABLE)
        };
    };
    // Simple case: a single definition with Some value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty = $value:expr
    } => {
        $(#[$attr])*
        $pub static $name: $crate::DynamicVariable<$type> = {
            static DEFAULT: $type = $value;
            thread_local! {
                static VARIABLE: $crate::DynamicCell<$type> = $crate::DynamicCell::with_static(&DEFAULT);
            }
            $crate::DynamicVariable::new(&VARIABLE)
        };
    };
    // Multiple definitions (iteration), with None value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty;
        $($rest:tt)*
    } => {
        $crate::fluid_let!($(#[$attr])* $pub static $name: $type);
        $crate::fluid_let!($($rest)*);
    };
    // Multiple definitions (iteration), with Some value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty = $value:expr;
        $($rest:tt)*
    } => {
        $crate::fluid_let!($(#[$attr])* $pub static $name: $type = $value);
        $crate::fluid_let!($($rest)*);
    };
    // No definitions (recursion base).
    {} => {};
}

// FIXME(ilammy, 2021-10-12): Make "static-init" available by default
//
// Macros can't abstract out #[cfg(...)] checks in expanded code
// thus we have to duplicate this macro to insert a compiler error.

#[cfg(not(feature = "static-init"))]
/// Declares global dynamic variables.
///
/// # Examples
///
/// One-line form for single declarations:
///
/// ```
/// # use fluid_let::fluid_let;
/// fluid_let!(static ENABLED: bool);
/// ```
///
/// Multiple declarations with attributes and visibility modifiers are also supported:
///
/// ```
/// # use fluid_let::fluid_let;
/// fluid_let! {
///     /// Length of `Debug` representation of hashes in characters.
///     pub static HASH_LENGTH: usize;
///
///     /// If set to true then passwords will be printed to logs.
///     #[cfg(test)]
///     static DUMP_PASSWORDS: bool;
/// }
/// ```
///
/// See also [crate-level documentation](index.html) for usage examples.
#[macro_export]
macro_rules! fluid_let {
    // Simple case: a single definition with None value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty
    } => {
        $(#[$attr])*
        $pub static $name: $crate::DynamicVariable<$type> = {
            thread_local! {
                static VARIABLE: $crate::DynamicCell<$type> = $crate::DynamicCell::empty();
            }
            $crate::DynamicVariable::new(&VARIABLE)
        };
    };
    // Simple case: a single definition with Some value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty = $value:expr
    } => {
        compile_error!("Static initialization is unstable, use \"static-init\" feature to opt-in");
    };
    // Multiple definitions (iteration), with None value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty;
        $($rest:tt)*
    } => {
        $crate::fluid_let!($(#[$attr])* $pub static $name: $type);
        $crate::fluid_let!($($rest)*);
    };
    // Multiple definitions (iteration), with Some value.
    {
        $(#[$attr:meta])*
        $pub:vis static $name:ident: $type:ty = $value:expr;
        $($rest:tt)*
    } => {
        $crate::fluid_let!($(#[$attr])* $pub static $name: $type = $value);
        $crate::fluid_let!($($rest)*);
    };
    // No definitions (recursion base).
    {} => {};
}

/// Binds a value to a dynamic variable.
///
/// # Examples
///
/// If you do not need to explicitly delimit the scope of dynamic assignment then you can
/// use `fluid_set!` to assign a value until the end of the current scope:
///
/// ```no_run
/// use fluid_let::{fluid_let, fluid_set};
///
/// fluid_let!(static ENABLED: bool);
///
/// fn some_function() {
///     fluid_set!(ENABLED, true);
///
///     // function body
/// }
/// ```
///
/// This is effectively equivalent to writing
///
/// ```no_run
/// # use fluid_let::{fluid_let, fluid_set};
/// #
/// # fluid_let!(static ENABLED: bool);
/// #
/// fn some_function() {
///     ENABLED.set(true, || {
///         // function body
///     });
/// }
/// ```
///
/// See also [crate-level documentation](index.html) for usage examples.
#[macro_export]
macro_rules! fluid_set {
    ($variable:expr, $value:expr) => {
        let _value_ = $value;
        // This is safe because the users do not get direct access to the guard
        // and are not able to drop it prematurely, thus maintaining invariants.
        let _guard_ = unsafe { $variable.set_guard(&_value_) };
    };
}

/// A global dynamic variable.
///
/// Declared and initialized by the [`fluid_let!`](macro.fluid_let.html) macro.
///
/// See [crate-level documentation](index.html) for examples.
pub struct DynamicVariable<T: 'static> {
    cell: &'static LocalKey<DynamicCell<T>>,
}

/// A resettable reference.
#[doc(hidden)]
pub struct DynamicCell<T> {
    cell: UnsafeCell<Option<*const T>>,
}

/// Guard setting a new value of `DynamicCell<T>`.
#[doc(hidden)]
pub struct DynamicCellGuard<'a, T> {
    old_value: Option<*const T>,
    cell: &'a DynamicCell<T>,
}

impl<T> DynamicVariable<T> {
    /// Initialize a dynamic variable.
    ///
    /// Use [`fluid_let!`](macro.fluid_let.html) macro to do this.
    #[doc(hidden)]
    pub const fn new(cell: &'static LocalKey<DynamicCell<T>>) -> Self {
        Self { cell }
    }

    /// Access current value of the dynamic variable.
    pub fn get<R>(&self, f: impl FnOnce(Option<&T>) -> R) -> R {
        self.cell.with(|current| {
            // This is safe because the lifetime of the reference returned by get()
            // is limited to this block so it cannot outlive any value set by set()
            // in the caller frames.
            f(unsafe { current.get() })
        })
    }

    /// Bind a new value to the dynamic variable.
    pub fn set<R>(&self, value: impl Borrow<T>, f: impl FnOnce() -> R) -> R {
        self.cell.with(|current| {
            // This is safe because the guard returned by set() is guaranteed to be
            // dropped after the thunk returns and before anything else executes.
            let _guard_ = unsafe { current.set(value.borrow()) };
            f()
        })
    }

    /// Bind a new value to the dynamic variable.
    ///
    /// # Safety
    ///
    /// The value is bound for the lifetime of the returned guard. The guard must be
    /// dropped before the end of lifetime of the new and old assignment values.
    /// If the variable is assigned another value while this guard is alive, it must
    /// not be dropped until that new assignment is undone.
    #[doc(hidden)]
    pub unsafe fn set_guard(&self, value: &T) -> DynamicCellGuard<T> {
        // We use transmute to extend the lifetime or "current" to that of "value".
        // This is really the case when assignments are properly scoped.
        unsafe fn extend_lifetime<'a, 'b, T>(r: &'a T) -> &'b T {
            mem::transmute(r)
        }
        self.cell
            .with(|current| extend_lifetime(current).set(value))
    }
}

impl<T: Clone> DynamicVariable<T> {
    /// Clone current value of the dynamic variable.
    pub fn cloned(&self) -> Option<T> {
        self.get(|value| value.cloned())
    }
}

impl<T: Copy> DynamicVariable<T> {
    /// Copy current value of the dynamic variable.
    pub fn copied(&self) -> Option<T> {
        self.get(|value| value.copied())
    }
}

impl<T> DynamicCell<T> {
    /// Makes a new empty cell.
    pub fn empty() -> Self {
        DynamicCell {
            cell: UnsafeCell::new(None),
        }
    }

    /// Makes a new cell with value.
    #[cfg(feature = "static-init")]
    pub fn with_static(value: &'static T) -> Self {
        DynamicCell {
            cell: UnsafeCell::new(Some(value)),
        }
    }

    /// Access the current value of the cell, if any.
    ///
    /// # Safety
    ///
    /// The returned reference is safe to use during the lifetime of a corresponding guard
    /// returned by a `set()` call. Ensure that this reference does not outlive it.
    unsafe fn get(&self) -> Option<&T> {
        (&*self.cell.get()).map(|p| &*p)
    }

    /// Temporarily set a new value of the cell.
    ///
    /// The value will be active while the returned guard object is live. It will be reset
    /// back to the original value (at the moment of the call) when the guard is dropped.
    ///
    /// # Safety
    ///
    /// You have to ensure that the guard for the previous value is dropped after this one.
    /// That is, they must be dropped in strict LIFO order, like a call stack.
    unsafe fn set(&self, value: &T) -> DynamicCellGuard<T> {
        DynamicCellGuard {
            old_value: mem::replace(&mut *self.cell.get(), Some(value)),
            cell: self,
        }
    }
}

impl<'a, T> Drop for DynamicCellGuard<'a, T> {
    fn drop(&mut self) {
        // We can safely drop the new value of a cell and restore the old one provided that
        // get() and set() methods of DynamicCell are used correctly. That is, there must be
        // no users of the new value which is about to be destroyed.
        unsafe {
            *self.cell.cell.get() = self.old_value.take();
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::fmt;
    use std::thread;

    #[test]
    fn cell_set_get_guards() {
        // This is how properly scoped usage of DynamicCell works.
        unsafe {
            let v = DynamicCell::empty();
            assert_eq!(v.get(), None);
            {
                let _g = v.set(&5);
                assert_eq!(v.get(), Some(&5));
                {
                    let _g = v.set(&10);
                    assert_eq!(v.get(), Some(&10));
                }
                assert_eq!(v.get(), Some(&5));
            }
        }
    }

    #[test]
    fn cell_unsafe_set_get_usage() {
        // The following is safe because references to constants are 'static,
        // but it is not safe in general case allowed by the API.
        unsafe {
            let v = DynamicCell::empty();
            let g1 = v.set(&5);
            let g2 = v.set(&10);
            assert_eq!(v.get(), Some(&10));
            // Specifically, you CANNOT do this:
            drop(g1);
            // g1 *must* outlive g2 or else you'll that values are restored in
            // incorrect order. Here we observe the value before "5" was set.
            assert_eq!(v.get(), None);
            // When g2 gets dropped it restores the value set by g1, which
            // may not be a valid reference at this point.
            drop(g2);
            assert_eq!(v.get(), Some(&5));
            // And now there's no one to reset the variable to None state.
        }
    }

    #[test]
    #[cfg(feature = "static-init")]
    fn static_initializer() {
        fluid_let!(static NUMBER: i32 = 42);

        assert_eq!(NUMBER.copied(), Some(42));

        fluid_let! {
            static NUMBER_1: i32 = 100;
            static NUMBER_2: i32;
            static NUMBER_3: i32 = 200;
        }

        assert_eq!(NUMBER_1.copied(), Some(100));
        assert_eq!(NUMBER_2.copied(), None);
        assert_eq!(NUMBER_3.copied(), Some(200));
    }

    #[test]
    fn dynamic_scoping() {
        fluid_let!(static YEAR: i32);

        YEAR.get(|current| assert_eq!(current, None));

        fluid_set!(YEAR, 2019);

        YEAR.get(|current| assert_eq!(current, Some(&2019)));
        {
            fluid_set!(YEAR, 2525);

            YEAR.get(|current| assert_eq!(current, Some(&2525)));
        }
        YEAR.get(|current| assert_eq!(current, Some(&2019)));
    }

    #[test]
    fn references() {
        fluid_let!(static YEAR: i32);

        // Temporary value
        fluid_set!(YEAR, 10);
        assert_eq!(YEAR.copied(), Some(10));

        // Local reference
        let current_year = 20;
        fluid_set!(YEAR, &current_year);
        assert_eq!(YEAR.copied(), Some(20));

        // Heap reference
        let current_year = Box::new(30);
        fluid_set!(YEAR, current_year);
        assert_eq!(YEAR.copied(), Some(30));
    }

    #[test]
    fn thread_locality() {
        fluid_let!(static THREAD_ID: i8);

        THREAD_ID.set(0, || {
            THREAD_ID.get(|current| assert_eq!(current, Some(&0)));
            let t = thread::spawn(move || {
                THREAD_ID.get(|current| assert_eq!(current, None));
                THREAD_ID.set(1, || {
                    THREAD_ID.get(|current| assert_eq!(current, Some(&1)));
                });
            });
            drop(t.join());
        })
    }

    #[test]
    fn convenience_accessors() {
        fluid_let!(static ENABLED: bool);

        assert_eq!(ENABLED.cloned(), None);
        assert_eq!(ENABLED.copied(), None);

        ENABLED.set(true, || assert_eq!(ENABLED.cloned(), Some(true)));
        ENABLED.set(true, || assert_eq!(ENABLED.copied(), Some(true)));
    }

    struct Hash {
        value: [u8; 16],
    }

    fluid_let!(pub static DEBUG_FULL_HASH: bool);

    impl fmt::Debug for Hash {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            let full = DEBUG_FULL_HASH.copied().unwrap_or(false);

            write!(f, "Hash(")?;
            if full {
                for byte in &self.value {
                    write!(f, "{:02X}", byte)?;
                }
            } else {
                for byte in &self.value[..4] {
                    write!(f, "{:02X}", byte)?;
                }
                write!(f, "...")?;
            }
            write!(f, ")")
        }
    }

    #[test]
    fn readme_example_code() {
        let hash = Hash { value: [0; 16] };
        assert_eq!(format!("{:?}", hash), "Hash(00000000...)");
        fluid_set!(DEBUG_FULL_HASH, true);
        assert_eq!(
            format!("{:?}", hash),
            "Hash(00000000000000000000000000000000)"
        );
    }
}