flowistry_pdg_construction/
local_analysis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
use std::{borrow::Cow, collections::HashSet, fmt::Display, iter, rc::Rc};

use flowistry::mir::{placeinfo::PlaceInfo, FlowistryInput};
use flowistry_pdg::{CallString, GlobalLocation, RichLocation};
use itertools::Itertools;
use log::{debug, log_enabled, trace, Level};

use rustc_borrowck::consumers::{places_conflict, PlaceConflictBias};
use rustc_errors::DiagCtxtHandle;
use rustc_hash::{FxHashMap, FxHashSet};
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_middle::{
    mir::{
        visit::Visitor, AggregateKind, BasicBlock, Body, HasLocalDecls, Location, Operand, Place,
        PlaceElem, Rvalue, Statement, Terminator, TerminatorEdges, TerminatorKind, RETURN_PLACE,
    },
    ty::{GenericArgKind, GenericArgsRef, Instance, TyCtxt, TyKind},
};
use rustc_mir_dataflow::{self as df, fmt::DebugWithContext, Analysis};
use rustc_span::{source_map::Spanned, DesugaringKind, Span};
use rustc_utils::{mir::control_dependencies::ControlDependencies, BodyExt, PlaceExt};

use crate::{
    approximation::ApproximationHandler,
    async_support::*,
    body_cache::CachedBody,
    calling_convention::*,
    graph::{DepEdge, DepNode, PartialGraph, SourceUse, TargetUse},
    mutation::{ModularMutationVisitor, Mutation, Time},
    utils::{self, handle_shims, is_async, is_virtual, try_monomorphize, ShimType},
    CallChangeCallback, CallChanges, CallInfo, InlineMissReason, MemoPdgConstructor, SkipCall,
};

#[derive(PartialEq, Eq, Default, Clone, Debug)]
pub(crate) struct InstructionState<'tcx> {
    last_mutation: FxHashMap<Place<'tcx>, FxHashSet<RichLocation>>,
}

impl<C> DebugWithContext<C> for InstructionState<'_> {}

impl df::JoinSemiLattice for InstructionState<'_> {
    fn join(&mut self, other: &Self) -> bool {
        utils::hashmap_join(
            &mut self.last_mutation,
            &other.last_mutation,
            utils::hashset_join,
        )
    }
}

pub(crate) struct LocalAnalysis<'tcx, 'a> {
    pub(crate) memo: &'a MemoPdgConstructor<'tcx>,
    pub(super) root: Instance<'tcx>,
    // TODO: We should generally be using mono_body, this one is only used in
    // retyping. Try and find out if I can use mono_body there too or
    // encapsulate this away so we don't accidentally use this polymorphic one.
    body_with_facts: &'tcx CachedBody<'tcx>,
    pub(crate) mono_body: Body<'tcx>,
    pub(crate) def_id: DefId,
    pub(crate) place_info: PlaceInfo<'tcx>,
    control_dependencies: ControlDependencies<BasicBlock>,
    pub(crate) body_assignments: utils::BodyAssignments,
    start_loc: FxHashSet<RichLocation>,
}

impl<'tcx, 'a> LocalAnalysis<'tcx, 'a> {
    /// Creates [`GraphConstructor`] for a function resolved as `fn_resolution`
    /// in a given `calling_context`.
    ///
    /// Returns `None`, if we were unable to load the body.
    pub(crate) fn new(
        memo: &'a MemoPdgConstructor<'tcx>,
        root: Instance<'tcx>,
    ) -> LocalAnalysis<'tcx, 'a> {
        let tcx = memo.tcx;
        let def_id = root.def_id();
        let body_with_facts = memo.body_cache.get(def_id);
        let param_env = body_with_facts
            .body()
            .typing_env(tcx)
            .with_post_analysis_normalized(tcx);
        //let param_env = TypingEnv::post_analysis(tcx, def_id).with_post_analysis_normalized(tcx);
        let body = try_monomorphize(
            root,
            tcx,
            param_env,
            body_with_facts.body(),
            tcx.def_span(def_id),
        )
        .unwrap();

        if memo.dump_mir {
            use std::io::Write;
            let path = tcx.def_path_str(def_id) + ".mir";
            let mut f = std::fs::File::create(path.as_str()).unwrap();
            write!(f, "{}", body.to_string(tcx).unwrap()).unwrap();
            debug!("Dumped debug MIR {path}");
        }

        let place_info = PlaceInfo::build(tcx, def_id, body_with_facts);
        let control_dependencies = body.control_dependencies();

        let mut start_loc = FxHashSet::default();
        start_loc.insert(RichLocation::Start);

        let body_assignments = utils::find_body_assignments(&body);

        LocalAnalysis {
            memo,
            root,
            body_with_facts,
            mono_body: body,
            place_info,
            control_dependencies,
            start_loc,
            def_id,
            body_assignments,
        }
    }

    fn make_dep_node(
        &self,
        place: Place<'tcx>,
        location: impl Into<RichLocation>,
    ) -> DepNode<'tcx> {
        DepNode::new(
            place,
            self.make_call_string(location),
            self.tcx(),
            &self.mono_body,
            self.place_info.children(place).iter().any(|p| *p != place),
        )
    }

    /// Returns all pairs of `(src, edge)`` such that the given `location` is control-dependent on `edge`
    /// with input `src`.
    pub(crate) fn find_control_inputs(&self, location: Location) -> Vec<(DepNode<'tcx>, DepEdge)> {
        let mut blocks_seen = HashSet::<BasicBlock>::from_iter(Some(location.block));
        let mut block_queue = vec![location.block];
        let mut out = vec![];
        while let Some(block) = block_queue.pop() {
            if let Some(ctrl_deps) = self.control_dependencies.dependent_on(block) {
                for dep in ctrl_deps.iter() {
                    let ctrl_loc = self.mono_body.terminator_loc(dep);
                    let Terminator {
                        kind: TerminatorKind::SwitchInt { discr, .. },
                        source_info,
                    } = self.mono_body.basic_blocks[dep].terminator()
                    else {
                        if blocks_seen.insert(dep) {
                            block_queue.push(dep);
                        }
                        continue;
                    };
                    if matches!(
                        source_info.span.desugaring_kind(),
                        Some(DesugaringKind::Await)
                    ) {
                        // We are dealing with control flow that was introduced
                        // by the "await" state machine. We don't care about
                        // this sine it's possible semantic impact is negligible.
                        continue;
                    }
                    let Some(ctrl_place) = discr.place() else {
                        continue;
                    };
                    let at = self.make_call_string(ctrl_loc);
                    let src = self.make_dep_node(ctrl_place, ctrl_loc);
                    let edge = DepEdge::control(at, SourceUse::Operand, TargetUse::Assign);
                    out.push((src, edge));
                }
            }
        }
        out
    }

    fn call_change_callback(&self) -> Option<&dyn CallChangeCallback<'tcx>> {
        self.memo.call_change_callback.as_ref().map(Rc::as_ref)
    }

    pub(crate) fn async_info(&self) -> &AsyncInfo {
        &self.memo.async_info
    }

    pub(crate) fn make_call_string(&self, location: impl Into<RichLocation>) -> CallString {
        CallString::single(GlobalLocation {
            function: self.def_id,
            location: location.into(),
        })
    }

    /// Returns the aliases of `place`. See [`PlaceInfo::aliases`] for details.
    pub(crate) fn aliases(&'a self, place: Place<'tcx>) -> impl Iterator<Item = Place<'tcx>> + 'a {
        // MASSIVE HACK ALERT:
        // The issue is that monomorphization erases regions, due to how it's implemented in rustc.
        // However, Flowistry's alias analysis uses regions to figure out aliases.
        // To workaround this incompatibility, when we receive a monomorphized place, we try to
        // recompute its type in the context of the original region-containing body as far as possible.
        //
        // For example, say _2: (&'0 impl Foo,) in the original body and _2: (&(i32, i32),) in the monomorphized body.
        // Say we ask for aliases (*(_2.0)).0. Then we will retype ((*_2.0).0).0 and receive back (*_2.0: &'0 impl Foo).
        // We can ask for the aliases in the context of the original body, receiving e.g. {_1}.
        // Then we reproject the aliases with the remaining projection, to create {_1.0}.
        //
        // This is a massive hack bc it's inefficient and I'm not certain that it's sound.
        let place_retyped =
            utils::retype_place(place, self.tcx(), self.body_with_facts.body(), self.def_id);
        self.place_info
            .aliases(place_retyped)
            .iter()
            .map(move |alias| {
                let mut projection = alias.projection.to_vec();
                projection.extend(&place.projection[place_retyped.projection.len()..]);
                let p = Place::make(alias.local, &projection, self.tcx());
                // let t1 = place.ty(&self.body, self.tcx());
                // let t2 = p.ty(&self.body, self.tcx());
                // if !t1.equiv(&t2) {
                //     let p1_str = format!("{place:?}");
                //     let p2_str = format!("{p:?}");
                // let l = p1_str.len().max(p2_str.len());
                //     panic!("Retyping in {} failed to produce an equivalent type.\n  Src {p1_str:l$} : {t1:?}\n  Dst {p2_str:l$} : {t2:?}", self.tcx().def_path_str(self.def_id))
                // }
                p
            })
    }

    pub(crate) fn tcx(&self) -> TyCtxt<'tcx> {
        self.memo.tcx
    }

    pub(crate) fn dcx(&self) -> DiagCtxtHandle<'tcx> {
        self.tcx().dcx()
    }

    /// Returns all nodes `src` such that `src` is:
    /// 1. Part of the value of `input`
    /// 2. The most-recently modified location for `src`
    pub(crate) fn find_data_inputs(
        &self,
        state: &InstructionState<'tcx>,
        input: Place<'tcx>,
    ) -> Vec<DepNode<'tcx>> {
        trace!("Finding inputs for place {input:?}");
        // Include all sources of indirection (each reference in the chain) as relevant places.
        let provenance = input
            .refs_in_projection(&self.mono_body, self.tcx())
            .map(|(place_ref, _)| Place::from_ref(place_ref, self.tcx()));
        let inputs = iter::once(input).chain(provenance);

        inputs
            // **POINTER-SENSITIVITY:**
            // If `input` involves indirection via dereferences, then resolve it to the direct places it could point to.
            .flat_map(|place| self.aliases(place))
            .flat_map(|alias| {
                // **FIELD-SENSITIVITY:**
                // Find all places that have been mutated which conflict with `alias.`
                let conflicts = state
                    .last_mutation
                    .iter()
                    .map(|(k, locs)| (*k, locs))
                    .filter(move |(place, _)| {
                        if place.is_indirect() && place.is_arg(&self.mono_body) {
                            // HACK: `places_conflict` seems to consider it a bug is `borrow_place`
                            // includes a dereference, which should only happen if `borrow_place`
                            // is an argument. So we special case that condition and just compare for local equality.
                            //
                            // TODO: this is not field-sensitive!
                            place.local == alias.local
                        } else {
                            let mut place = *place;
                            if let Some((PlaceElem::Deref, rest)) = place.projection.split_last() {
                                let mut new_place = place;
                                new_place.projection = self.tcx().mk_place_elems(rest);
                                if new_place.ty(&self.mono_body, self.tcx()).ty.is_box() {
                                    if new_place.is_indirect() {
                                        // TODO might be unsound: We assume that if
                                        // there are other indirections in here,
                                        // there is an alias that does not have
                                        // indirections in it.
                                        return false;
                                    }
                                    place = new_place;
                                }
                            }
                            trace!("Checking conflict status of {place:?} and {alias:?}");
                            places_conflict(
                                self.tcx(),
                                &self.mono_body,
                                place,
                                alias,
                                PlaceConflictBias::Overlap,
                            )
                        }
                    });

                // Special case: if the `alias` is an un-mutated argument, then include it as a conflict
                // coming from the special start location.
                let alias_last_mut = if alias.is_arg(&self.mono_body) {
                    Some((alias, &self.start_loc))
                } else {
                    None
                };

                // For each `conflict`` last mutated at the locations `last_mut`:
                conflicts
                    .chain(alias_last_mut)
                    .flat_map(|(conflict, last_mut_locs)| {
                        // For each last mutated location:
                        last_mut_locs.iter().map(move |last_mut_loc| {
                            // Return <CONFLICT> @ <LAST_MUT_LOC> as an input node.
                            self.make_dep_node(conflict, *last_mut_loc)
                        })
                    })
            })
            .collect()
    }

    pub(crate) fn find_outputs(
        &self,
        mutated: Place<'tcx>,
        location: Location,
    ) -> Vec<(Place<'tcx>, DepNode<'tcx>)> {
        // **POINTER-SENSITIVITY:**
        // If `mutated` involves indirection via dereferences, then resolve it to the direct places it could point to.
        let aliases = self.aliases(mutated).collect_vec();

        // **FIELD-SENSITIVITY:** we do NOT deal with fields on *writes* (in this function),
        // only on *reads* (in `add_input_to_op`).

        // For each mutated `dst`:
        aliases
            .iter()
            .map(|dst| {
                // Create a destination node for (DST @ CURRENT_LOC).
                (*dst, self.make_dep_node(*dst, location))
            })
            .collect()
    }

    /// Updates the last-mutated location for `dst` to the given `location`.
    fn apply_mutation(
        &self,
        state: &mut InstructionState<'tcx>,
        location: Location,
        mutated: Place<'tcx>,
    ) {
        self.find_outputs(mutated, location)
            .into_iter()
            .for_each(|(dst, _)| {
                // Create a destination node for (DST @ CURRENT_LOC).

                // Clear all previous mutations.
                let dst_mutations = state.last_mutation.entry(dst).or_default();
                dst_mutations.clear();

                // Register that `dst` is mutated at the current location.
                dst_mutations.insert(RichLocation::Location(location));
            })
    }

    /// Resolve a function [`Operand`] to a specific [`DefId`] and generic arguments if possible.
    pub(crate) fn operand_to_def_id(
        &self,
        func: &Operand<'tcx>,
    ) -> Option<(DefId, GenericArgsRef<'tcx>)> {
        let ty = func.ty(&self.mono_body, self.tcx());
        utils::type_as_fn(self.tcx(), ty)
    }

    fn fmt_fn(&self, def_id: DefId) -> String {
        self.tcx().def_path_str(def_id)
    }

    pub(crate) fn determine_call_handling<'b>(
        &'b self,
        location: Location,
        func: Cow<'_, Operand<'tcx>>,
        args: Cow<'b, [Spanned<Operand<'tcx>>]>,
        span: Span,
    ) -> Option<CallHandling<'tcx, 'b>> {
        let tcx = self.tcx();

        trace!(
            "Considering call at {location:?} in {:?}",
            self.tcx().def_path_str(self.def_id)
        );

        let Some((called_def_id, generic_args)) = self.operand_to_def_id(&func) else {
            self.dcx()
                .span_err(span, "Operand is cannot be interpreted as function");
            return None;
        };
        trace!(
            "Resolved call to function: {} with generic args {generic_args:?}",
            self.fmt_fn(called_def_id)
        );

        // Monomorphize the called function with the known generic_args.
        let typing_env = self
            .mono_body
            .typing_env(tcx)
            .with_post_analysis_normalized(tcx);
        let Some(mut resolved_fn) =
            utils::try_resolve_function(self.tcx(), called_def_id, typing_env, generic_args)
        else {
            let dynamics = generic_args.iter()
                .flat_map(|g| g.walk())
                .filter(|arg| matches!(arg.unpack(), GenericArgKind::Type(t) if matches!(t.kind(), TyKind::Dynamic(..))))
                .collect::<Box<[_]>>();
            let mut msg = format!(
                "instance resolution for call to function {} failed.",
                tcx.def_path_str(called_def_id)
            );
            if !dynamics.is_empty() {
                use std::fmt::Write;
                write!(msg, " Dynamic arguments ").unwrap();
                let mut first = true;
                for dyn_ in dynamics.iter() {
                    if !first {
                        write!(msg, ", ").unwrap();
                    }
                    first = false;
                    write!(msg, "`{dyn_}`").unwrap();
                }
                write!(
                    msg,
                    " were found.\n\
                    These may have been injected by Paralegal to instantiate generics \n\
                    at the entrypoint (location of #[paralegal::analyze]).\n\
                    A likely reason why this may cause this resolution to fail is if the\n\
                    method or function this attempts to resolve has a `Sized` constraint.\n\
                    Such a constraint can be implicit if this is a type variable in a\n\
                    trait definition and no refutation (`?Sized` constraint) is present."
                )
                .unwrap();
                self.dcx().span_warn(span, msg);
            } else {
                self.dcx().span_err(span, msg);
            }
            return None;
        };

        let call_kind = if let Some((instance, shim_type)) =
            handle_shims(resolved_fn, self.tcx(), typing_env, span)
        {
            resolved_fn = instance;
            CallKind::Indirect {
                shim: Some(shim_type),
            }
        } else {
            self.classify_call_kind(called_def_id, resolved_fn, &args, span)
        };
        let resolved_def_id = resolved_fn.def_id();
        if log_enabled!(Level::Trace) && called_def_id != resolved_def_id {
            let (called, resolved) = (self.fmt_fn(called_def_id), self.fmt_fn(resolved_def_id));
            trace!("  `{called}` monomorphized to `{resolved}`",);
        }

        if let Some(handler) = self.can_approximate_async_functions(resolved_def_id) {
            return Some(CallHandling::ApproxAsyncSM(handler));
        };

        trace!("  Handling call! with kind {}", call_kind);

        // Recursively generate the PDG for the child function.
        let cache_key = resolved_fn;

        let is_cached = self.memo.is_in_cache(cache_key);

        let call_changes = self.call_change_callback().map(|callback| {
            let info = CallInfo {
                callee: resolved_fn,
                call_string: self.make_call_string(location),
                is_cached,
                async_parent: if let CallKind::AsyncPoll(poll) = &call_kind {
                    // Special case for async. We ask for skipping not on the closure, but
                    // on the "async" function that created it. This is needed for
                    // consistency in skipping. Normally, when "poll" is inlined, mutations
                    // introduced by the creator of the future are not recorded and instead
                    // handled here, on the closure. But if the closure is skipped we need
                    // those mutations to occur. To ensure this we always ask for the
                    // "CallChanges" on the creator so that both creator and closure have
                    // the same view of whether they are inlined or "Skip"ped.
                    poll.async_fn_parent
                } else {
                    None
                },
                span,
                arguments: &args,
                caller_body: &self.mono_body,
                param_env: typing_env,
            };
            callback.on_inline(info)
        });

        // Handle async functions at the time of polling, not when the future is created.
        if is_async(tcx, resolved_def_id) {
            trace!("  Bailing because func is async");

            // If a skip was requested then "poll" will not be inlined later so we
            // bail with "None" here and perform the mutations. Otherwise we bail with
            // "Some", knowing that handling "poll" later will handle the mutations.
            return (!matches!(
                &call_changes,
                Some(CallChanges {
                    skip: SkipCall::Skip,
                    ..
                })
            ))
            .then_some(CallHandling::ApproxAsyncFn);
        }

        let (calling_convention, precise) = match call_changes {
            Some(CallChanges {
                skip: SkipCall::Skip,
            }) => {
                trace!("  Bailing because user callback said to bail");
                return None;
            }
            Some(CallChanges {
                skip:
                    SkipCall::Replace {
                        instance,
                        calling_convention,
                    },
            }) => {
                trace!("  Replacing call as instructed by user");
                resolved_fn = instance;
                (calling_convention, false)
            }
            _ => (CallingConvention::from_call_kind(&call_kind, args), true),
        };
        if is_virtual(tcx, resolved_def_id) {
            trace!("  bailing because is unresolvable trait method");
            if let Some(callback) = self.call_change_callback() {
                callback.on_inline_miss(
                    resolved_fn,
                    typing_env,
                    location,
                    self.root,
                    InlineMissReason::TraitMethod,
                    span,
                );
            }
            return None;
        }
        let Some(descriptor) = self.memo.construct_for(resolved_fn) else {
            trace!("  Bailing because of recursion.");
            return None;
        };

        Some(CallHandling::Ready {
            descriptor,
            calling_convention,
            precise,
        })
    }

    /// Attempt to inline a call to a function.
    ///
    /// The return indicates whether we were successfully able to perform the inlining.
    fn handle_call(
        &self,
        state: &mut InstructionState<'tcx>,
        location: Location,
        func: &Operand<'tcx>,
        args: &[Spanned<Operand<'tcx>>],
        destination: Place<'tcx>,
        span: Span,
    ) -> bool {
        // Note: my comments here will use "child" to refer to the callee and
        // "parent" to refer to the caller, since the words are most visually distinct.

        let Some(preamble) =
            self.determine_call_handling(location, Cow::Borrowed(func), Cow::Borrowed(args), span)
        else {
            return false;
        };

        trace!("Call handling is {}", preamble.as_ref());

        let (child_constructor, calling_convention, precise) = match preamble {
            CallHandling::Ready {
                descriptor,
                calling_convention,
                precise,
            } => (descriptor, calling_convention, precise),
            CallHandling::ApproxAsyncFn => {
                // Register a synthetic assignment of `future = (arg0, arg1, ...)`.
                let rvalue = Rvalue::Aggregate(
                    Box::new(AggregateKind::Tuple),
                    IndexVec::from_iter(args.iter().map(|o| o.node.clone())),
                );
                self.modular_mutation_visitor(state)
                    .visit_assign(&destination, &rvalue, location);
                return true;
            }
            CallHandling::ApproxAsyncSM(handler) => {
                handler(
                    self,
                    &mut self.modular_mutation_visitor(state),
                    args,
                    destination,
                    location,
                );
                return true;
            }
        };

        let parentable_dsts = child_constructor.parentable_dsts(|n| n.len() == 1);
        let parent_body = &self.mono_body;

        let place_translator = PlaceTranslator::new(
            self.async_info(),
            self.def_id,
            parent_body,
            self.tcx(),
            destination,
            &calling_convention,
            precise,
        );

        // For each destination node CHILD that is parentable to PLACE,
        // add an edge from CHILD -> PLACE.
        //
        // PRECISION TODO: for a given child place, we only want to connect
        // the *last* nodes in the child function to the parent, not *all* of them.
        trace!("CHILD -> PARENT EDGES:");
        for (child_dst, _) in parentable_dsts {
            if let Some(parent_place) = place_translator.translate_to_parent(child_dst.place) {
                self.apply_mutation(state, location, parent_place);
            }
        }

        true
    }

    fn modular_mutation_visitor<'b: 'a>(
        &'b self,
        state: &'a mut InstructionState<'tcx>,
    ) -> ModularMutationVisitor<'b, 'tcx, impl FnMut(Location, Mutation<'tcx>) + 'b> {
        ModularMutationVisitor::new(
            &self.place_info,
            move |location, mutation: Mutation<'tcx>| {
                self.apply_mutation(state, location, mutation.mutated)
            },
        )
    }

    pub(super) fn generic_args(&self) -> GenericArgsRef<'tcx> {
        self.root.args
    }

    pub(crate) fn construct_partial(&'a self) -> PartialGraph<'tcx> {
        let mut analysis = self.iterate_to_fixpoint(self.tcx(), &self.mono_body, None);

        let mut final_state = PartialGraph::new(
            self.generic_args(),
            self.def_id,
            self.mono_body.arg_count,
            self.mono_body.local_decls(),
        );

        analysis.visit_reachable_with(&self.mono_body, &mut final_state);

        let all_returns = self
            .mono_body
            .all_returns()
            .map(|ret| ret.block)
            .collect_vec();
        let mut analysis = analysis.into_results_cursor(&self.mono_body);
        for block in all_returns {
            analysis.seek_to_block_end(block);
            let return_state = analysis.get();
            for (place, locations) in &return_state.last_mutation {
                let ret_kind = if place.local == RETURN_PLACE {
                    TargetUse::Return
                } else if let Some(num) = other_as_arg(*place, &self.mono_body) {
                    TargetUse::MutArg(num)
                } else {
                    continue;
                };
                for location in locations {
                    let src = self.make_dep_node(*place, *location);
                    let dst = self.make_dep_node(*place, RichLocation::End);
                    let edge = DepEdge::data(
                        self.make_call_string(self.mono_body.terminator_loc(block)),
                        SourceUse::Operand,
                        ret_kind,
                    );
                    final_state.edges.insert((src, dst, edge));
                }
            }
        }

        final_state
    }

    /// Determine the type of call-site.
    ///
    /// The error case is if we tried to resolve this as async and failed. We
    /// know it *is* async but we couldn't determine the information needed to
    /// analyze the function, therefore we will have to approximate it.
    fn classify_call_kind<'b>(
        &'b self,
        def_id: DefId,
        resolved_fn: Instance<'tcx>,
        original_args: &'b [Spanned<Operand<'tcx>>],
        span: Span,
    ) -> CallKind<'tcx> {
        match self.try_poll_call_kind(def_id, resolved_fn, original_args) {
            AsyncDeterminationResult::Resolved(r) => r,
            AsyncDeterminationResult::NotAsync => self
                .try_indirect_call_kind(resolved_fn.def_id())
                .unwrap_or(CallKind::Direct),
            AsyncDeterminationResult::Unresolvable(reason) => self.dcx().span_fatal(span, reason),
        }
    }

    fn try_indirect_call_kind(&self, def_id: DefId) -> Option<CallKind<'tcx>> {
        self.tcx()
            .is_closure_like(def_id)
            .then_some(CallKind::Indirect { shim: None })
    }

    fn terminator_visitor<'b: 'a>(
        &'b self,
        state: &'b mut InstructionState<'tcx>,
        time: Time,
    ) -> ModularMutationVisitor<'b, 'tcx, impl FnMut(Location, Mutation<'tcx>) + 'b> {
        let mut vis = self.modular_mutation_visitor(state);
        vis.set_time(time);
        vis
    }
}

impl<'tcx> LocalAnalysis<'tcx, '_> {
    fn handle_terminator(
        &self,
        terminator: &Terminator<'tcx>,
        state: &mut InstructionState<'tcx>,
        location: Location,
        time: Time,
    ) {
        if let TerminatorKind::Call {
            func,
            args,
            destination,
            ..
        } = &terminator.kind
        {
            if self.handle_call(
                state,
                location,
                func,
                args,
                *destination,
                terminator.source_info.span,
            ) {
                return;
            }
        }
        // Fallback: call the visitor
        self.terminator_visitor(state, time)
            .visit_terminator(terminator, location)
    }
}

impl<'a, 'tcx> df::Analysis<'tcx> for &'a LocalAnalysis<'tcx, 'a> {
    type Domain = InstructionState<'tcx>;

    const NAME: &'static str = "LocalPdgConstruction";

    fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
        InstructionState::default()
    }

    fn initialize_start_block(&self, _body: &Body<'tcx>, _state: &mut Self::Domain) {}
    fn apply_primary_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        statement: &Statement<'tcx>,
        location: Location,
    ) {
        self.modular_mutation_visitor(state)
            .visit_statement(statement, location)
    }

    fn apply_primary_terminator_effect<'mir>(
        &mut self,
        state: &mut Self::Domain,
        terminator: &'mir Terminator<'tcx>,
        location: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        self.handle_terminator(terminator, state, location, Time::Unspecified);
        terminator.edges()
    }

    fn apply_call_return_effect(
        &mut self,
        _state: &mut Self::Domain,
        _block: BasicBlock,
        _return_places: rustc_middle::mir::CallReturnPlaces<'_, 'tcx>,
    ) {
    }
}

pub enum CallKind<'tcx> {
    /// A standard function call like `f(x)`.
    Direct,
    /// A call to a function variable, like `fn foo(f: impl Fn()) { f() }`
    Indirect {
        /// The call takes place via a shim that implements `FnOnce` for a `Fn`
        /// or `FnMut` closure.
        shim: Option<ShimType>,
    },
    /// A poll to an async function, like `f.await`.
    AsyncPoll(AsyncFnPollEnv<'tcx>),
}

impl Display for CallKind<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Direct => f.write_str("direct")?,
            Self::AsyncPoll(_) => f.write_str("async poll")?,
            Self::Indirect { shim: None } => f.write_str("indirect")?,
            Self::Indirect { shim: Some(shim) } => write!(f, "({} shim)", shim.as_ref())?,
        }
        Ok(())
    }
}

#[derive(strum::AsRefStr)]
pub(crate) enum CallHandling<'tcx, 'a> {
    ApproxAsyncFn,
    Ready {
        calling_convention: CallingConvention<'tcx>,
        descriptor: &'a PartialGraph<'tcx>,
        precise: bool,
    },
    ApproxAsyncSM(ApproximationHandler<'tcx, 'a>),
}

fn other_as_arg<'tcx>(place: Place<'tcx>, body: &Body<'tcx>) -> Option<u8> {
    (body.local_kind(place.local) == rustc_middle::mir::LocalKind::Arg)
        .then(|| place.local.as_u32() as u8 - 1)
}