pub fn dijkstra<G, F, K>(
graph: G,
start: G::NodeId,
goal: Option<G::NodeId>,
edge_cost: F
) -> HashMap<G::NodeId, K>where
G: IntoEdges + Visitable,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
K: Measure + Copy,
Expand description
[Generic] Dijkstra’s shortest path algorithm.
Compute the length of the shortest path from start
to every reachable
node.
The graph should be Visitable
and implement IntoEdges
. The function
edge_cost
should return the cost for a particular edge, which is used
to compute path costs. Edge costs must be non-negative.
If goal
is not None
, then the algorithm terminates once the goal
node’s
cost is calculated.
Returns a HashMap
that maps NodeId
to path cost.
Example
use petgraph::Graph;
use petgraph::algo::dijkstra;
use petgraph::prelude::*;
use std::collections::HashMap;
let mut graph: Graph<(), (), Directed> = Graph::new();
let a = graph.add_node(()); // node with no weight
let b = graph.add_node(());
let c = graph.add_node(());
let d = graph.add_node(());
let e = graph.add_node(());
let f = graph.add_node(());
let g = graph.add_node(());
let h = graph.add_node(());
// z will be in another connected component
let z = graph.add_node(());
graph.extend_with_edges(&[
(a, b),
(b, c),
(c, d),
(d, a),
(e, f),
(b, e),
(f, g),
(g, h),
(h, e),
]);
// a ----> b ----> e ----> f
// ^ | ^ |
// | v | v
// d <---- c h <---- g
let expected_res: HashMap<NodeIndex, usize> = [
(a, 3),
(b, 0),
(c, 1),
(d, 2),
(e, 1),
(f, 2),
(g, 3),
(h, 4),
].iter().cloned().collect();
let res = dijkstra(&graph, b, None, |_| 1);
assert_eq!(res, expected_res);
// z is not inside res because there is not path from b to z.