pub fn bellman_ford<G>(
    g: G,
    source: G::NodeId
) -> Result<Paths<G::NodeId, G::EdgeWeight>, NegativeCycle>where
    G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
    G::EdgeWeight: FloatMeasure,
Expand description

[Generic] Compute shortest paths from node source to all other.

Using the Bellman–Ford algorithm; negative edge costs are permitted, but the graph must not have a cycle of negative weights (in that case it will return an error).

On success, return one vec with path costs, and another one which points out the predecessor of a node along a shortest path. The vectors are indexed by the graph’s node indices.

Example

use petgraph::Graph;
use petgraph::algo::bellman_ford;
use petgraph::prelude::*;

let mut g = Graph::new();
let a = g.add_node(()); // node with no weight
let b = g.add_node(());
let c = g.add_node(());
let d = g.add_node(());
let e = g.add_node(());
let f = g.add_node(());
g.extend_with_edges(&[
    (0, 1, 2.0),
    (0, 3, 4.0),
    (1, 2, 1.0),
    (1, 5, 7.0),
    (2, 4, 5.0),
    (4, 5, 1.0),
    (3, 4, 1.0),
]);

// Graph represented with the weight of each edge
//
//     2       1
// a ----- b ----- c
// | 4     | 7     |
// d       f       | 5
// | 1     | 1     |
// \------ e ------/

let path = bellman_ford(&g, a);
assert!(path.is_ok());
let path = path.unwrap();
assert_eq!(path.distances, vec![    0.0,     2.0,    3.0,    4.0,     5.0,     6.0]);
assert_eq!(path.predecessors, vec![None, Some(a),Some(b),Some(a), Some(d), Some(e)]);

// Node f (indice 5) can be reach from a with a path costing 6.
// Predecessor of f is Some(e) which predecessor is Some(d) which predecessor is Some(a).
// Thus the path from a to f is a <-> d <-> e <-> f

let graph_with_neg_cycle = Graph::<(), f32, Undirected>::from_edges(&[
        (0, 1, -2.0),
        (0, 3, -4.0),
        (1, 2, -1.0),
        (1, 5, -25.0),
        (2, 4, -5.0),
        (4, 5, -25.0),
        (3, 4, -1.0),
]);

assert!(bellman_ford(&graph_with_neg_cycle, NodeIndex::new(0)).is_err());