pub fn astar<G, F, H, K, IsGoal>(
graph: G,
start: G::NodeId,
is_goal: IsGoal,
edge_cost: F,
estimate_cost: H
) -> Option<(K, Vec<G::NodeId>)>where
G: IntoEdges + Visitable,
IsGoal: FnMut(G::NodeId) -> bool,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
H: FnMut(G::NodeId) -> K,
K: Measure + Copy,
Expand description
[Generic] A* shortest path algorithm.
Computes the shortest path from start
to finish
, including the total path cost.
finish
is implicitly given via the is_goal
callback, which should return true
if the
given node is the finish node.
The function edge_cost
should return the cost for a particular edge. Edge costs must be
non-negative.
The function estimate_cost
should return the estimated cost to the finish for a particular
node. For the algorithm to find the actual shortest path, it should be admissible, meaning that
it should never overestimate the actual cost to get to the nearest goal node. Estimate costs
must also be non-negative.
The graph should be Visitable
and implement IntoEdges
.
Example
use petgraph::Graph;
use petgraph::algo::astar;
let mut g = Graph::new();
let a = g.add_node((0., 0.));
let b = g.add_node((2., 0.));
let c = g.add_node((1., 1.));
let d = g.add_node((0., 2.));
let e = g.add_node((3., 3.));
let f = g.add_node((4., 2.));
g.extend_with_edges(&[
(a, b, 2),
(a, d, 4),
(b, c, 1),
(b, f, 7),
(c, e, 5),
(e, f, 1),
(d, e, 1),
]);
// Graph represented with the weight of each edge
// Edges with '*' are part of the optimal path.
//
// 2 1
// a ----- b ----- c
// | 4* | 7 |
// d f | 5
// | 1* | 1* |
// \------ e ------/
let path = astar(&g, a, |finish| finish == f, |e| *e.weight(), |_| 0);
assert_eq!(path, Some((6, vec![a, d, e, f])));
Returns the total cost + the path of subsequent NodeId
from start to finish, if one was
found.